Skip to main content
Log in

The influence of heterogeneity on the strength of volcanic rocks and the stability of lava domes

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The collapse of lava domes, inherently heterogeneous structures, represents a significant volcanic hazard. Numerical and analogue models designed to model dome instability and collapse have incorporated heterogeneity in the form of discrete zones with homogeneous properties. Based on an assessment of dome rock heterogeneity, we explore whether material property heterogeneity (“diffuse” heterogeneity) within these discrete zones can promote dome instability. X-ray computed tomography shows that dome samples are characterised by high microstructural heterogeneities; e.g. porosity varies from 0.07 to 0.20 over millimetric length scales. To explore how microstructural heterogeneity influences sample-scale strength, we performed numerical simulations using Rock Failure and Process Analysis. The mean mechanical properties of the numerical samples were constant, and we introduced heterogeneity by varying their distribution using a Weibull probability function. The models show that increasing heterogeneity can reduce sample-scale strength by more than a factor of 2. To explore the influence of dome-scale heterogeneity, we numerically generated lava domes in Particle Flow Code. The domes have the same bulk strength but are characterised by different degrees of heterogeneity by varying the distribution of cohesion using a Weibull probability function. The models show that a greater degree of heterogeneity induces higher dome-scale displacements and that, when there is also a discrete weakened zone, the addition of diffuse heterogeneity leads to more widely distributed deformation. Therefore, alongside discrete zones defined by different material properties, we find that the diffuse heterogeneity inherent to a dome is sufficient to compromise dome stability and should be incorporated in future modelling endeavours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Appoloni CR, Fernandes CP, Rodrigues CRO (2007) X-ray microtomography study of a sandstone reservoir rock. Nucl Instrum Methods Phys Res, Sect A 580(1):629–632

    Article  Google Scholar 

  • Bain AA, Lamur A, Kendrick JE, Lavallée Y, Calder ES, Cortés JA, Butler IB, Cortés GP (2019) Constraints on the porosity, permeability and porous micro-structure of highly-crystalline andesitic magma during plug formation. Journal of Volcanology and Geothermal Research 379:72–89. https://doi.org/10.1016/j.jvolgeores.2019.05.001

    Article  Google Scholar 

  • Ball JL, Calder ES, Hubbard BE, Bernstein ML (2013) An assessment of hydrothermal alteration in the Santiaguito lava dome complex, Guatemala: implications for dome collapse hazards. Bull Volcanol 75(1):1–18

    Article  Google Scholar 

  • Ball JL, Taron J, Reid ME, Hurwitz S, Finn C, Bedrosian P (2018) Combining multiphase groundwater flow and slope stability models to assess stratovolcano flank collapse in the Cascade Range. Journal of Geophysical Research: Solid Earth 123(4):2787–2805

    Article  Google Scholar 

  • Baud P, Exner U, Lommatzsch M, Reuschlé T, Wong T-F (2017) Mechanical behavior, failure mode, and transport properties in a porous carbonate. J Geophysical Res: Solid Earth 122(9):7363–7387

    Google Scholar 

  • Byrdina S, Friedel S, Vandemeulebrouck J, Budi-Santoso A, Suryanto W, Rizal MH, Winata E (2017) Geophysical image of the hydrothermal system of Merapi volcano. J Volcanol Geoth Res 329:30–40

    Article  Google Scholar 

  • Byrne PK, Holohan EP, Kervyn M, van Wyk de Vries, B., Troll, V. R., & Murray, J. B. (2013) A sagging-spreading continuum of large volcano structure. Geology 41(3):339–342. https://doi.org/10.1130/G33990.1

    Article  Google Scholar 

  • Calder ES, Luckett R, Sparks RSJ, Voight B (2002) Mechanisms of lava dome instability and generation of rockfalls and pyroclastic flows at Soufriere Hills Volcano, Montserrat. Geol Soc, London, Memoirs 21(1):173–190

    Article  Google Scholar 

  • Carr BB, Lev E, Vanderkluysen L, Moyer D, Marliyani GI, Clarke AB (2022) The stability and collapse of lava domes: insight from photogrammetry and slope stability models applied to Sinabung volcano (Indonesia). Front Earth Sci 10:813813

    Article  Google Scholar 

  • Cashman KV (2020) Crystal size distribution (CSD) analysis of volcanic samples: advances and challenges. Front Earth Sci 8:291

    Article  Google Scholar 

  • Cecchi E, van Wyk de Vries, B., & Lavest, J. M. (2004) Flank spreading and collapse of weak-cored volcanoes. Bulletin of Volcanology 67(1):72–91. https://doi.org/10.1007/s00445-004-0369-3

    Article  Google Scholar 

  • Clarke AB, Stephens S, Teasdale R, Sparks RSJ, Diller K (2007) Petrologic constraints on the decompression history of magma prior to Vulcanian explosions at the Soufrière Hills volcano, Montserrat. J Volcanol Geoth Res 161(4):261–274

    Article  Google Scholar 

  • Darmawan H, Walter TR, Brotopuspito KS, Nandaka IGMA (2018) Morphological and structural changes at the Merapi lava dome monitored in 2012–15 using unmanned aerial vehicles (UAVs). J Volcanol Geoth Res 349:256–267

    Article  Google Scholar 

  • Darmawan H, Troll VR, Walter TR, Deegan FM, Geiger H, Heap MJ, Seraphine N, Harris C, Humaida H, Müller D (2022) Hidden mechanical weaknesses within lava domes provided by buried high-porosity hydrothermal alteration zones. Scientific Reports 12(1):1–14. https://doi.org/10.1038/s41598-022-06765-9

    Article  Google Scholar 

  • Elsworth D, Voight B, Thompson G, Young SR (2004) Thermal-hydrologic mechanism for rainfall-triggered collapse of lava domes. Geology 32(11):969–972

    Article  Google Scholar 

  • Farquharson J, Heap MJ, Varley NR, Baud P, Reuschlé T (2015) Permeability and porosity relationships of edifice-forming andesites: a combined field and laboratory study. J Volcanol Geoth Res 297:52–68

    Article  Google Scholar 

  • Farquharson JI, Heap MJ, Lavallée Y, Varley NR, Baud P (2016) Evidence for the development of permeability anisotropy in lava domes and volcanic conduits. J Volcanol Geoth Res 323:163–185

    Article  Google Scholar 

  • Fink JH, Griffiths RW (1998) Morphology, eruption rates, and rheology of lava domes: insights from laboratory models. J Geophysical Res: Solid Earth 103(B1):527–545

    Article  Google Scholar 

  • Finn CA, Deszcz-Pan M, Ball JL, Bloss BJ, Minsley BJ (2018) Three-dimensional geophysical mapping of shallow water saturated altered rocks at Mount Baker, Washington: implications for slope stability. J Volcanol Geoth Res 357:261–275

    Article  Google Scholar 

  • Ghazvinian E, Diederichs MS, Quey R (2014) 3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing. J Rock Mechanics Geotechnical Eng 6(6):506–521

    Article  Google Scholar 

  • Gray JP, Monaghan JJ (2004) Numerical modelling of stress fields and fracture around magma chambers. J Volcanol Geoth Res 135(3):259–283

    Article  Google Scholar 

  • Griffiths L, Heap MJ, Xu T, Chen CF, Baud P (2017) The influence of pore geometry and orientation on the strength and stiffness of porous rock. J Struct Geol 96:149–160

    Article  Google Scholar 

  • Harnett CE, Heap MJ (2021) Mechanical and topographic factors influencing lava dome growth and collapse. J Volcanol Geoth Res 420:107398

    Article  Google Scholar 

  • Harnett CE, Thomas ME, Purvance MD, Neuberg J (2018) Using a discrete element approach to model lava dome emplacement and collapse. J Volcanol Geoth Res 359:68–77

    Article  Google Scholar 

  • Harnett CE, Thomas ME, Calder ES, Ebmeier SK, Telford A, Murphy W, Neuberg J (2019a) Presentation and analysis of a worldwide database for lava dome collapse events: the Global Archive of Dome Instabilities (GLADIS). Bull Volcanol 81(3):1–17

    Article  Google Scholar 

  • Harnett CE, Kendrick JE, Lamur A, Thomas ME, Stinton A, Wallace PA, Utley JE, Murphy W, Neuberg J, Lavallée Y (2019b) Evolution of mechanical properties of lava dome rocks across the 1995–2010 eruption of soufrière hills volcano. Montserrat. Frontiers in Earth Science 7:7. https://doi.org/10.3389/feart.2019.00007

  • Harnett CE, Heap MJ, Troll VR, Deegan FM, Walter TR (2022) Large-scale lava dome fracturing as a result of concealed weakened zones. Geology 50(12):1346–1350

    Article  Google Scholar 

  • Heap MJ, Violay ME (2021) The mechanical behaviour and failure modes of volcanic rocks: a review. Bull Volcanol 83(5):1–47

    Article  Google Scholar 

  • Heap MJ, Lavallée Y, Petrakova L, Baud P, Reuschlé T, Varley NR, Dingwell DB (2014a) Microstructural controls on the physical and mechanical properties of edifice-forming andesites at Volcán de Colima, Mexico. J Geophysical Res: Solid Earth 119(4):2925–2963

    Google Scholar 

  • Heap MJ, Xu T, Chen CF (2014b) The influence of porosity and vesicle size on the brittle strength of volcanic rocks and magma. Bull Volcanol 76(9):1–15

    Article  Google Scholar 

  • Heap MJ, Wadsworth FB, Xu T, Chen CF (2016) The strength of heterogeneous volcanic rocks: a 2D approximation. J Volcanol Geoth Res 319:1–11

    Article  Google Scholar 

  • Heap MJ, Villeneuve M, Albino F, Farquharson JI, Brothelande E, Amelung F, Got JL, Baud P (2020a) Towards more realistic values of elastic moduli for volcano modelling. Journal of Volcanology and Geothermal Research 390:106684. https://doi.org/10.1016/j.jvolgeores.2019.106684

  • Heap MJ, Baud P, McBeck JA, Renard F, Carbillet L, Hall SA (2020b) Imaging strain localisation in porous andesite using digital volume correlation. J Volcanol Geoth Res 404:107038

    Article  Google Scholar 

  • Heap MJ, Baumann T, Gilg HA, Kolzenburg S, Ryan AG, Villeneuve M, Russell JK, Kennedy LA, Rosas-Carbajal M, Clynne MA (2021a) Hydrothermal alteration can result in pore pressurization and volcano instability. Geology 49(11):1348–1352. https://doi.org/10.1130/G49063.1

  • Heap MJ, Baumann TS, Rosas‐Carbajal M, Komorowski JC, Gilg HA, Villeneuve M, Moretti R, Baud P, Carbillet L, Harnett C, Reuschlé T (2021b) Alteration‐Induced Volcano Instability at La Soufrière de Guadeloupe (Eastern Caribbean). Journal of Geophysical Research: Solid Earth, 126(8):e2021JB022514. https://doi.org/10.1029/2021JB022514

  • Heap MJ, Wadsworth FB, Heng Z, Xu T, Griffiths L, Velasco AA, Vairé E, Vistour M, Reuschlé T, Troll VR, Deegan FM (2021c) The tensile strength of volcanic rocks: Experiments and models. Journal of Volcanology and Geothermal Research, 418:107348. https://doi.org/10.1016/j.jvolgeores.2021.107348

  • Heap MJ, Harnett CE, Wadsworth FB, Gilg HA, Carbillet L, Rosas-Carbajal M, Komorowski JC, Baud P, Troll VR, Deegan FM, Holohan EP, Moretti R (2022a) The tensile strength of hydrothermally altered volcanic rocks. Journal of Volcanology and Geothermal Research 107576. https://doi.org/10.1016/j.jvolgeores.2022.107576

  • Heap MJ, Troll VR, Harris C, Gilg HA, Moretti R, Rosas-Carbajal M, Komorowski JC, Baud P (2022b) Whole-rock oxygen isotope ratios as a proxy for the strength and stiffness of hydrothermally altered volcanic rocks. Bulletin of Volcanology 84(8):1–14. https://doi.org/10.1007/s00445-022-01588-y

  • Heap MJ, Jessop DE, Wadsworth FB, Rosas-Carbajal M, Komorowski JC, Gilg HA, Aron N, Buscetti M, Gential L, Goupil M, Masson M, Hervieu L, Kushnir ARL, Baud P, Carbillet L, Ryan AG, Moretti R (2022c) The thermal properties of hydrothermally altered andesites from La Soufrière de Guadeloupe (Eastern Caribbean). Journal of Volcanology and Geothermal Research 421:107444. https://doi.org/10.1016/j.jvolgeores.2021.107444

  • Heiken G, Wohletz K, Eichelberger J (1988) Fracture fillings and intrusive pyroclasts, Inyo Domes, California. J Geophysical Res: Solid Earth 93(B5):4335–4350

    Article  Google Scholar 

  • Husain T, Elsworth D, Voight B, Mattioli G, Jansma P (2014) Influence of extrusion rate and magma rheology on the growth of lava domes: insights from particle-dynamics modeling. J Volcanol Geoth Res 285:100–117

    Article  Google Scholar 

  • Ji Y, Hall SA, Baud P, Wong T-F (2015) Characterization of pore structure and strain localization in Majella limestone by X-ray computed tomography and digital image correlation. Geophys J Int 200(2):701–719

    Article  Google Scholar 

  • Kendrick JE, Schaefer LN, Schauroth J, Bell AF, Lamb OD, Lamur A, Miwa T, Coats R, Lavallée Y, Kennedy BM (2021) Physical and mechanical rock properties of a heterogeneous volcano: the case of Mount Unzen. Japan. Solid Earth 12(3):633–664. https://doi.org/10.5194/se-12-633-2021

    Article  Google Scholar 

  • Komorowski JC, Hoblitt RP, Sheridan MF (1997) Silicification and brecciation microtextures of the Mt. St. Helens 1980 cryptodome-country rock interface: implications for hydrothermal fluid processes, precursory seismicity, and eruptive style. Volcanic Activity and the Environment Abstracts, International Association of Volcanology and Chemistry of the Earth's Interior, General Assembly, Puerto Vallarta, Mexico, Jan. 19-25 1997, Abstract, p. 76

  • Komorowski JC, Jenkins S, Baxter PJ, Picquout A, Lavigne F, Charbonnier S, Gertisser R, Preece K, Cholik N, Budi-Santoso A (2013) Paroxysmal dome explosion during the Merapi 2010 eruption: Processes and facies relationships of associated high-energy pyroclastic density currents. Journal of Volcanology and Geothermal Research 261:260–294. https://doi.org/10.1016/j.jvolgeores.2013.01.007

    Article  Google Scholar 

  • Krumbholz M, Hieronymus CF, Burchardt S, Troll VR, Tanner DC, Friese N (2014) Weibull-distributed dyke thickness reflects probabilistic character of host-rock strength. Nat Commun 5(1):3272

    Article  Google Scholar 

  • Kushnir AR, Martel C, Bourdier JL, Heap MJ, Reuschlé T, Erdmann S, Komorowski JC, Cholik N (2016) Probing permeability and microstructure: unravelling the role of a low-permeability dome on the explosivity of Merapi (Indonesia). Journal of Volcanology and Geothermal Research 316:56–71. https://doi.org/10.1016/j.jvolgeores.2016.02.012

    Article  Google Scholar 

  • Lagmay AMF, Wyk Van, de Vries B, Kerle N, Pyle DM (2000) Volcano instability induced by strike-slip faulting. Bulletin of Volcanology 62(4):331–346. https://doi.org/10.1007/s004450000103

    Article  Google Scholar 

  • Lesparre N, Gibert D, Marteau J, Komorowski JC, Nicollin F, Coutant O (2012) Density muon radiography of La Soufriere of Guadeloupe volcano: comparison with geological, electrical resistivity and gravity data. Geophys J Int 190(2):1008–1019

    Article  Google Scholar 

  • Liakas S, O’Sullivan C, Saroglou C (2017) Influence of heterogeneity on rock strength and stiffness using discrete element method and parallel bond model. J Rock Mechanics Geotechnical Eng 9(4):575–584

    Article  Google Scholar 

  • Liu HY, Roquete M, Kou SQ, Lindqvist PA (2004) Characterization of rock heterogeneity and numerical verification. Eng Geol 72(1–2):89–119

    Article  Google Scholar 

  • Long H, Swennen R, Foubert A, Dierick M, Jacobs P (2009) 3D quantification of mineral components and porosity distribution in Westphalian C sandstone by microfocus X-ray computed tomography. Sed Geol 220(1–2):116–125

    Article  Google Scholar 

  • Louis L, Baud P, Wong TF (2007) Characterization of pore-space heterogeneity in sandstone by X-ray computed tomography. Geol Soc, London, Special Public 284(1):127–146

    Article  Google Scholar 

  • Matthews AJ, Barclay J, Carn S, Thompson G, Alexander J, Herd R, Williams C (2002) Rainfall-induced volcanic activity on Montserrat. Geophys Res Lett 29(13):22–31

    Article  Google Scholar 

  • Mériaux CA, May DA, Jaupart C (2022) The impact of vent geometry on the growth of lava domes. Geophys J Int 229(3):1680–1694

    Article  Google Scholar 

  • Mordensky SP, Villeneuve MC, Kennedy BM, Struthers JD (2022) Hydrothermally induced edifice destabilisation: the mechanical behaviour of rock mass surrounding a shallow intrusion in andesitic lavas, Pinnacle Ridge, Ruapehu. New Zealand Eng Geol 305:106696

    Google Scholar 

  • Moretti R, Komorowski JC, Ucciani G, Moune S, Jessop D, de Chabalier JB, Beauducel F, Bonifacie M, Burtin A, Vallée M, Deroussi S, Robert V, Gibert D, Didier T, Kitou T, Feuillet N, Allard P, Tamburello G, Shreve T, Saurel JM, Lemarchand A, Rosas-Carbajal M, Agrinier P, Le Friant A, Chaussidon M (2020) The 2018 unrest phase at La Soufrière of Guadeloupe (French West Indies) andesitic volcano: Scrutiny of a failed but prodromal phreatic eruption. Journal of Volcanology and Geothermal Research 393:106769. https://doi.org/10.1016/j.jvolgeores.2020.106769

  • Nakada S, Shimizu H, Ohta K (1999) Overview of the 1990–1995 eruption at Unzen Volcano. Journal of Volcanology and Geothermal Research 89(1–4):1–22

    Article  Google Scholar 

  • Ogburn SE, Loughlin SC, Calder ES (2015) The association of lava dome growth with major explosive activity (VEI≥ 4): DomeHaz, a global dataset. Bull Volcanol 77(5):1–17

    Article  Google Scholar 

  • Peng J, Wong LNY, Teh CI (2017) Influence of grain size heterogeneity on strength and microcracking behavior of crystalline rocks. J Geophysical Res: Solid Earth 122(2):1054–1073

    Google Scholar 

  • Peruzzetto M, Komorowski JC, Le Friant A, Rosas-Carbajal M, Mangeney A, Legendre Y (2019) Modeling of partial dome collapse of La Soufrière of Guadeloupe volcano: implications for hazard assessment and monitoring. Sci Rep 9(1):13105

    Article  Google Scholar 

  • Peterson DE, Finn CA, Bedrosian PA (2021) Airborne geophysical imaging of weak zones on Iliamna Volcano, Alaska: Implications for slope stability. J Geophysical Res: Solid Earth 126(3):e2020JB020807

    Google Scholar 

  • Reid ME (2004) Massive collapse of volcano edifices triggered by hydrothermal pressurization. Geology 32(5):373–376

    Article  Google Scholar 

  • Reid ME, Sisson TW, Brien DL (2001) Volcano collapse promoted by hydrothermal alteration and edifice shape, Mount Rainier. Wash Geol 29(9):779–782

    Article  Google Scholar 

  • Rhodes E, Kennedy BM, Lavallée Y, Hornby A, Edwards M, Chigna G (2018) Textural insights into the evolving lava dome cycles at Santiaguito lava dome. Guatemala Frontiers Earth Sci 6:30

    Article  Google Scholar 

  • Rosas-Carbajal M, Komorowski JC, Nicollin F, Gibert D (2016) Volcano electrical tomography unveils edifice collapse hazard linked to hydrothermal system structure and dynamics. Sci Rep 6(1):1–11

    Article  Google Scholar 

  • Rosas-Carbajal M, Jourde K, Marteau J, Deroussi S, Komorowski JC, Gibert D (2017) Three-dimensional density structure of La Soufrière de Guadeloupe lava dome from simultaneous muon radiographies and gravity data. Geophys Res Lett 44(13):6743–6751

    Article  Google Scholar 

  • Saucedo R, Macías JL, Sheridan MF, Bursik MI, Komorowski JC (2005) Modeling of pyroclastic flows of Colima Volcano, Mexico: implications for hazard assessment. J Volcanol Geoth Res 139(1–2):103–115

    Article  Google Scholar 

  • Shea T, Houghton BF, Gurioli L, Cashman KV, Hammer JE, Hobden BJ (2010) Textural studies of vesicles in volcanic rocks: an integrated methodology. J Volcanol Geoth Res 190(3–4):271–289

    Article  Google Scholar 

  • Smith R, Sammonds PR, Tuffen H, Meredith PG (2011) Evolution of the mechanics of the 2004–2008 Mt. St. Helens lava dome with time and temperature. Earth Planetary Sci Lett 307(2):191–200

    Article  Google Scholar 

  • Sparks RSJ (1997) Causes and consequences of pressurisation in lava dome eruptions. Earth Planet Sci Lett 150(3–4):177–189

    Article  Google Scholar 

  • Sparks RSJ, Barclay J, Calder ES, Herd RA, Komorowski JC, Luckett R, Norton GE, Ritchie LJ, Voight B, Woods AW (2002) Generation of a debris avalanche and violent pyroclastic density current on 26 December (Boxing Day) 1997 at Soufriere Hills Volcano, Montserrat. Geological Society, London, Memoirs 21(1):409–434

    Article  Google Scholar 

  • Stavrou A, Vazaios I, Murphy W, Vlachopoulos N (2019) Refined approaches for estimating the strength of rock blocks. Geotech Geol Eng 37(6):5409–5439

    Article  Google Scholar 

  • Tanaka HKM, Nakano T, Takahashi S, Yoshida J, Ohshima H, Maekawa T, Watanabe H, Niwa K (2007) Imaging the conduit size of the dome with cosmic-ray muons: The structure beneath Showa-Shinzan Lava Dome. Japan. Geophysical Research Letters 34(22). https://doi.org/10.1029/2007GL031389

  • Tang C (1997) Numerical simulation of progressive rock failure and associated seismicity. Int J Rock Mech Min Sci 34(2):249–261

    Article  Google Scholar 

  • Tang S (2011) Applications of rock failure process analysis (RFPA) method. J Rock Mechanics Geotechnical Eng 3(4):352–372

    Article  Google Scholar 

  • Tang CA, Liu H, Lee PKK, Tsui Y, Tham L (2000) Numerical studies of the influence of microstructure on rock failure in uniaxial compression—part I: effect of heterogeneity. Int J Rock Mech Min Sci 37(4):555–569

    Article  Google Scholar 

  • Tang CA, Tham LG, Wang SH, Liu H, Li WH (2007) A numerical study of the influence of heterogeneity on the strength characterization of rock under uniaxial tension. Mech Mater 39(4):326–339

    Article  Google Scholar 

  • Taron J, Elsworth D, Thompson G, Voight B (2007) Mechanisms for rainfall-concurrent lava dome collapses at Soufrière Hills Volcano, 2000–2002. J Volcanol Geoth Res 160(1–2):195–209

    Article  Google Scholar 

  • Tsepelev I, Ismail-Zadeh A, Melnik O (2020) Lava dome morphology inferred from numerical modelling. Geophys J Int 223(3):1597–1609

    Article  Google Scholar 

  • Tuffen H, Dingwell DB, Pinkerton H (2003) Repeated fracture and healing of silicic magma generate flow banding and earthquakes? Geology 31(12):1089–1092

    Article  Google Scholar 

  • B Van Wyk de Vries N Kerle D Petley 2000 Sector collapse forming at Casita volcano Nicaragua Geology 28 2 167 170

  • Villeneuve MC, Heap MJ (2021) Calculating the cohesion and internal friction angle of volcanic rocks and rock masses. Volcanica 4(2):279–293

    Article  Google Scholar 

  • Villeneuve MC, Diederichs MS, Kaiser PK (2012) Effects of grain scale heterogeneity on rock strength and the chipping process. Int J Geomech 12(6):632–647

    Article  Google Scholar 

  • Voight B (2000) Structural stability of andesite volcanoes and lava domes. Philosophical Transact Royal Soc London Series A: Mathematical, Physical Eng Sci 358(1770):1663–1703

    Article  Google Scholar 

  • Voight B, Elsworth D (2000) Instability and collapse of hazardous gas-pressurized lava domes. Geophys Res Lett 27(1):1–4

    Article  Google Scholar 

  • Voight B, Constantine EK, Siswowidjoyo S, Torley R (2000) Historical eruptions of Merapi volcano, central Java, Indonesia, 1768–1998. J Volcanol Geoth Res 100(1–4):69–138

    Article  Google Scholar 

  • Wallace CS, Schaefer LN, Villeneuve MC (2022) Material properties and triggering mechanisms of an andesitic lava dome collapse at Shiveluch Volcano, Kamchatka, Russia, revealed using the finite element method. Rock Mech Rock Eng 55(5):2711–2728

    Article  Google Scholar 

  • Walter TR, Subandriyo J, Kirbani S, Bathke H, Suryanto W, Aisyah N, Darmawan H, Jousset P, Luehr BG, Dahm T (2015) Volcano-tectonic control of Merapi’s lava dome splitting: The November 2013 fracture observed from high resolution TerraSAR-X data. Tectonophysics 639:23–33. https://doi.org/10.1016/j.tecto.2014.11.007

    Article  Google Scholar 

  • Walter TR, Harnett CE, Varley N, Bracamontes DV, Salzer J, Zorn EU, Bretón M, Arámbula R, Thomas ME (2019) Imaging the 2013 explosive crater excavation and new dome formation at Volcán de Colima with TerraSAR-X, time-lapse cameras and modelling. Journal of Volcanology and Geothermal Research 369:224–237. https://doi.org/10.1016/j.jvolgeores.2018.11.016

    Article  Google Scholar 

  • Watts RB, Herd RA, Sparks RSJ, Young SR, Druitt TH (2002) Growth patterns and emplacement of the andesitic lava dome at Soufriere Hills Volcano, Montserrat. MEMOIRS-GEOLOGICAL SOCIETY OF LONDON 21:115–152

    Article  Google Scholar 

  • Wong TF, Wong RH, Chau KT, Tang CA (2006) Microcrack statistics, Weibull distribution and micromechanical modeling of compressive failure in rock. Mech Mater 38(7):664–681

    Article  Google Scholar 

  • Xu T, Zhou G, Heap MJ, Yang S, Konietzky H, Baud P (2018) The modeling of time-dependent deformation and fracturing of brittle rocks under varying confining and pore pressures. Rock Mech Rock Eng 51:3241–3263

    Article  Google Scholar 

  • Xu T, Fu TF, Heap MJ, Meredith PG, Mitchell TM, Baud P (2020) Mesoscopic damage and fracturing of heterogeneous brittle rocks based on three-dimensional polycrystalline discrete element method. Rock Mech Rock Eng 53(12):5389–5409

    Article  Google Scholar 

  • Zandomeneghi D, Voltolini M, Mancini L, Brun F, Dreossi D, Polacci M (2010) Quantitative analysis of X-ray microtomography images of geomaterials: application to volcanic rocks. Geosphere 6(6):793–804

    Article  Google Scholar 

  • Zhao H, Zhao T, Ning Z, Zhang R, Duan T, Wang Q, Lian P, Zhang D, Zhang W (2019) Petrophysical characterization of tight oil sandstones by microscale X-ray computed tomography. Marine and Petroleum Geology 102:604–614. https://doi.org/10.1016/j.marpetgeo.2019.01.029

    Article  Google Scholar 

  • Zhu WC (2008) Numerical modelling of the effect of rock heterogeneity on dynamic tensile strength. Rock Mech Rock Eng 41(5):771

    Article  Google Scholar 

  • Zhu WC, Tang CA (2004) Micromechanical model for simulating the fracture process of rock. Rock Mech Rock Eng 37:25–56

    Article  Google Scholar 

  • Zorn EU, Rowe MC, Cronin SJ, Ryan AG, Kennedy LA, Russell JK (2018) Influence of porosity and groundmass crystallinity on dome rock strength: a case study from Mt Taranaki New Zealand. Bulletin Volcanol 80(4):1–17

    Article  Google Scholar 

  • Zorn EU, Walter TR, Heap MJ, Kueppers U (2020) Insights into lava dome and spine extrusion using analogue sandbox experiments. Earth Planet Sci Lett 551:116571

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by ANR grant MYGALE (“Modelling the phYsical and chemical Gradients of hydrothermal ALteration for warning systems of flank collapse at Explosive volcanoes”; ANR-21-CE49-0010). M. Heap also acknowledges support from the Institut Universitaire de France (IUF). M. Heap and C. Harnett also acknowledge support from the Irish Research Council (IRC); the French ministries for Europe and foreign affairs (MEAE) and higher education, research, and innovation (MESRI); and Campus France via the Hubert Curien (PHC) Ulysses Ireland-France funding scheme. We thank The Fleet (Dublin, Ireland) for their hospitality. We thank IPGP for general funding to the Observatoires Volcanologiques et Sismologiques (OVS), the INSU-CNRS for funding provided by Service National d’Observation en Volcanologie (SNOV), and the French Ministère pour la Transition Ecologique et Solidaire (MTES) for the financial support. The authors thank the OVSG-IPGP team for the logistical support and help with data and material collection. This study contributes to the IdEx Université Paris Cité ANR-18-IDEX-0001. The comments of two reviewers, and the editor, helped improve this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M. Heap and C. Harnett conceived and developed the idea for this study. Numerical experiments using PFC were performed by C. Harnett. Numerical experiments using RFPA were performed by Z. Heng and T. Xu. Image analysis was performed by T. Nazarbayov. M. Heap and C. Harnett wrote the first draft of the manuscript, with contributions from all authors. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Michael J. Heap or Claire E. Harnett.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Editorial responsibility: U. Kueppers

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 275 KB)

Supplementary file2 (XLSX 706 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heap, M.J., Harnett, C.E., Nazarbayov, T. et al. The influence of heterogeneity on the strength of volcanic rocks and the stability of lava domes. Bull Volcanol 85, 49 (2023). https://doi.org/10.1007/s00445-023-01669-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-023-01669-6

Keywords

Navigation