Skip to main content
Log in

Timescales and mechanisms of paroxysm initiation at Stromboli volcano, Aeolian Islands, Italy

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

New textural and petrological data are presented on products from five paroxysms at Stromboli (Aeolian Islands, Italy) including the two from 2019 and three historical (1930, undated, sixteenth century) eruptions. The data are used to constrain timescales associated with the initiation of paroxysms and to examine current models for their triggering. Samples were collected from the deposits and a subset selected for mineral separation and petrological and textural characterization. Minerals and glass were imaged by scanning electron microscopy (SEM), and chemical composition and zonation were analysed by electron microprobe. Trace elements in olivine were also determined. Vesicle number densities, vesicularities and vesicle diameters were measured by X-ray microCT techniques. The data were systematically compared with results of experiments simulating, on the one hand, ascent, vesiculation, degassing and crystallization of LP (low-porphyricity) magma and, on the other hand, interaction between LP and HP (high-porphyricity) magma. Paroxysm samples are mixed and include portions representative of both LP and HP magma. They host in variable proportions minerals and glass texturally and compositionally typical of these two magma types. Small but systematic variations in matrix glass compositions are found between each of the five eruptions considered. All samples host a population of vesicles ranging from < 15 to > 1000 μm in diameter and whose size distributions follow mixed exponential to power law distributions. Vesicularities are high (75% on average) and vesicle number densities range from 102-103 to 103-104 mm-3. Using experimental calibrations, the vesicle textural data suggest average LP magma ascent rates of 1–2 m/s (i.e. ~1.5 hours from depths between 7 and 1.5 km). The correlation between ascent rate and textures demonstrates systematic variations between eruptions, the most energetic (i.e. that of 1930) being associated with the highest ascent rate (~2 m/s). Widths of plagioclase reaction zones indicate that LP and HP magmas interacted for a maximum a few hours before eruption. Olivine reaction also implies durations of a few hours for LP-HP interaction and is followed by crystallization for 20 hours in the HP magma. Our results stress the fast ascent of LP magma from their storage region and their short residence times at shallow levels before being erupted. They clarify the respective roles of the deep and shallow feeding systems. An integrated phenomenological model for paroxysm initiation at Stromboli is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with Image. J Biophoton Int 11:36–43

    Google Scholar 

  • Aiuppa A, Federico C, Giudice G, Giuffrida G, Guida R, Gurrieri S, Liuzzo M, Moretti R, Papale P (2009) The 2007 eruption of Stromboli volcano: Insights from real-time measurement of the volcanic gas plume CO2/SO2 ratio. J Volcanol Geotherm Res 182:221–230

    Article  Google Scholar 

  • Aiuppa A, Burton M, Caltabiano T, Giudice G, Guerrieri S, Liuzzo M, Murè F, Salerno G (2010) Unusually large magmatic CO2 gas emissions prior to a basaltic paroxysm. Geophys Res Lett 37:L17303. https://doi.org/10.1029/2010GL043837

    Article  Google Scholar 

  • Aiuppa A, Bitetto M, Delle Donne D, La Monica FP, Tamburello G, Coppola D, Della Schiava M, Innocenti L, Lacanna G, Laiolo M, Massimetti F, Pistolesi M, Silengo MC, Ripepe M (2021) Volcanic CO2 tracks the incubation period of basaltic paroxysms. Sci Adv 7:eabh0191

    Article  Google Scholar 

  • Allard P (2010) A CO2-rich gas trigger of explosive paroxysms at Stromboli basaltic volcano, Italy. J Volcanol Geotherm Res 189:363–374

    Article  Google Scholar 

  • Andronico D, Del Bello E, Ciancitto F, Cristaldi A, D’Oriano C, Landi P, Pennacchia F, Ricci T, Scarlato P, Taddeucci J (2020) The 3 July and 28 August 2019 paroxysms at Stromboli. Abstract Volume 4th Conferenza A. Rittmann, p 243

    Google Scholar 

  • Andronico D, Del Bello E, D’Oriano C, Landi P, Pardini F, Scarlato P, de’ Michieli Vitturi M, Taddeucci J, Cristaldi A, Ciancitto F, Pennacchia F, Ricci T, Valentini F (2021) Uncovering the eruptive patterns of the 2019 double paroxysm eruption crisis of Stromboli volcano. Nature Comm. https://doi.org/10.1038/s41467-021-24420-1

  • Barberi F, Rosi M, Sodi A (1993) Volcanic hazard assessment at Stromboli based on review of historical data. Acta Vulcanol 3:173–187

    Google Scholar 

  • Bertagnini A, Métrich N, Landi P, Rosi M (2003) Stromboli volcano (Aeolian Archipelago, Italy): An open window on the deep-feeding system of a steady state basaltic volcano. J Geophys Res Solid Earth 108(B7):2336

    Article  Google Scholar 

  • Bertagnini A, Roberto A, Pompilio M (2011) Paroxysmal activity at Stromboli: lessons from the past. Bull Volcanol 73:1229–1243

    Article  Google Scholar 

  • Bevilacqua A, Bertagnini A, Pompilio M, Landi P, Del Carlo P, Di Roberto A, Aspinall W, Neri A (2020) Major explosions and paroxysms at Stromboli (Italy): a new historical catalog and temporal models of occurrence with uncertainty quantification. Sci Rep 10:17357

    Article  Google Scholar 

  • Calvari S, Spampinato L, Lodato L (2006) The 5 April 2003 Vulcanian paroxysmal explosion at Stromboli volcano (Italy) from field observations and thermal data. J Volcanol Geotherm Res 149:160–175

    Article  Google Scholar 

  • Calvari S, Spampinato L, Bonaccorso A, Oppenheimer C, Rivalta E, Boschi E (2011) Lava effusion–A slow fuse for paroxysms at Stromboli volcano? Earth Planet. Sci Lett 301:317–323

    Google Scholar 

  • Cashman KV, Mangan MT (1994) Physical aspects of magmatic degassing II. Constraints on vesiculation processes from textural studies of eruptive products. Rev Mineral 30:447–478

    Google Scholar 

  • D’Oriano C, Bertagnini A, Pompilio M (2011) Ash erupted during normal activity at Stromboli (Aeolian Islands, Italy) raises questions on how the feeding system works. Bull Volcanol 73:471–477

    Article  Google Scholar 

  • Di Carlo I, Pichavant M, Rotolo S, Scaillet B (2006) Experimental crystallization of a high-K arc basalt: the golden pumice, Stromboli volcano (Italy). J Petrol 47:1317–1343

    Article  Google Scholar 

  • Di Carlo I, Pichavant M, Rotolo S, Scaillet B (2010) Textures and kinetics of mineral-melt reactions in volatile-bearing basaltic melts. EMPG XIII Toulouse Abstract volume, p 54

    Google Scholar 

  • Di Roberto A, Bertagnini A, Pompilio M, Bisson M (2014) Pyroclastic density currents at Stromboli volcano (Aeolian Islands, Italy): a case study of the 1930 eruption. Bull Volcanol 76:827. https://doi.org/10.1007/s00445-014-0827-5

    Article  Google Scholar 

  • Ferguson DJ, Gonnermann HM, Ruprecht P, Plank T, Hauri EH, Houghton BF, Swanson DA (2016) Magma decompression rates during explosive eruptions of Kīlauea volcano, Hawaii, recorded by melt embayments. Bull Volcanol 78:71. https://doi.org/10.1007/s00445-016-1064-x

    Article  Google Scholar 

  • Francalanci L, Tommasini S, Conticelli S (2004) The volcanic activity of Stromboli in the 1906–1998 AD period: mineralogical, geochemical and isotope data relevant to the understanding of the plumbing system. J Volcanol Geotherm Res 131:179–211

    Article  Google Scholar 

  • Giordano G, De Astis G (2021) The summer 2019 basaltic Vulcanian eruptions (paroxysms) of Stromboli. Bull Volcanol 83:1. https://doi.org/10.1007/s00445-020-01423-2

    Article  Google Scholar 

  • Giudicepietro F, López C, Macedonio G, Alparone S, Bianco F, Calvari S, De Cesare W, Delle Donne D, Di Lieto B, Esposito AM, Orazi M, Peluso R, Privitera E, Romano P, Scarpato G, Tramelli A (2020) Geophysical precursors of the July-August 2019 paroxysmal eruptive phase and their implications for Stromboli volcano (Italy) monitoring. Sci Rep 10. https://doi.org/10.1038/s41598-020-67220-1

  • Gurioli L, Colo L, Bollasina AJ, Harris AJL, Whittington A, Ripepe M (2013) Dynamics of Strombolian explosions: inferences from field and laboratory studies of erupted bombs from Stromboli volcano. J Geophys Res 119:319–345

    Article  Google Scholar 

  • Hammouda T, Pichavant M (2000) Melting of fluorphlogopite-plagioclase pairs at 1 atm. Eur J Mineral 12:315–328

    Article  Google Scholar 

  • Harris AJL, Ripepe M (2007) Synergy of multiple geophysical approaches to unravel explosive eruption conduit and source dynamics – A case study from Stromboli. Chem Erde 67:1–35

    Article  Google Scholar 

  • Harris AJL, Ripepe M, Calvari S, Lodato L, Spampinato L (2008) The 5 April 2003 explosion of Stromboli: Timing of eruption dynamics using thermal data. In: Calvari S, Inguaggiato S, Puglisi G, Ripepe M, Rosi M (eds) The Stromboli Volcano: An Integrated Study of the 2002–2003 Eruption, Geophysical Monograph, vol 182. American Geophysical Union, Washington, pp 305–316

    Google Scholar 

  • Houghton BF, Gonnermann HM (2008) Basaltic explosive volcanism: constraints from deposits and models. Chem Erde 68:117–140

    Article  Google Scholar 

  • James MR, Lane SJ, Corder SB (2008) Modelling the rapid near-surface expansion of gas slugs in low-viscosity magmas. In: Lane SJ, Gilbert JS (eds) Fluid motions in volcanic conduits: A source of seismic and acoustic signals, Special Publications, vol 307. Geological Society, London, pp 147–167

    Google Scholar 

  • Jarosewich E, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostand Newslett 4:43–47

    Article  Google Scholar 

  • Landi P, Métrich N, Bertagnini A, Rosi M (2004) Dynamics of magma mixing and degassing recorded in plagioclase at Stromboli (Aeolian Archipelago, Italy). Contrib Mineral Petrol 147:213–227

    Article  Google Scholar 

  • Landi P, Francalanci L, Pompilio M, Rosi M, Corsaro RA, Petrone CM, Nardini I, Miraglia L (2006) The December 2002-July 2003 effusive event at Stromboli volcano, Italy: insights into the shallow plumbing system by petrochemical studies. J Volcanol Geotherm Res 155:263–284

    Article  Google Scholar 

  • Landi P, Corsaro RA, Francalanci L, Civetta L, Miraglia L, Pompilio M, Tesoro R (2009) Magma dynamics during the 2007 Stromboli eruption (Aeolian Islands. Italy): mineralogical, geochemical and isotopic data. J Volcanol Geotherm Res 182:255–268

    Article  Google Scholar 

  • Le Gall N, Pichavant M (2016a) Homogeneous bubble nucleation in H2O- and H2O-CO2-bearing basaltic melts: results of high temperature decompression experiments. J Volcanol Geotherm Res 327:604–621

    Article  Google Scholar 

  • Le Gall N, Pichavant M (2016b) Experimental simulation of bubble nucleation and magma ascent in basaltic systems: Implications for Stromboli volcano. Am Mineral 101:1967–1987

    Article  Google Scholar 

  • Mangan MT, Cashman KV, Newman S (1993) Vesiculation of basaltic magma during eruption. Geology 21:157–160

    Article  Google Scholar 

  • Masotta M, Pontesilli A, Mollo S, Armienti P, Ubide T, Nazzari M, Scarlato P (2020) The role of undercooling during clinopyroxene growth in trachybasaltic magmas: Insights on magma decompression and cooling at Mt. Etna volcano. Geochim Cosmochim Acta 268:258–276

    Article  Google Scholar 

  • Massol H, Jaupart C (1999) The generation of gas overpressure in volcanic eruptions. Earth Planet Sci Lett 166:57–70

    Article  Google Scholar 

  • Massol H, Koyaguchi T (2005) The effect of magma flow on nucleation of gas bubbles in a volcanic conduit. J Volcanol Geotherm Res 143:69–88

    Article  Google Scholar 

  • Métrich N, Bertagnini A, Landi P, Rosi M (2001) Crystallization driven by decompression and water loss at Stromboli volcano (Aeolian Islands, Italy). J Petrol 42:1471–1490

    Article  Google Scholar 

  • Métrich N, Bertagnini A, Di Muro A (2010) Conditions of magma storage, degassing and ascent at Stromboli: new insights into the volcanic plumbing system with inferences on the eruptive dynamics. J Petrol 51:603–626

    Article  Google Scholar 

  • Métrich N, Bertagnini A, Pistolesi M (2021) Paroxysms at Stromboli volcano (Italy): source, genesis and dynamics. Front Earth Sci 9:593339. https://doi.org/10.3389/feart.2021.593339

    Article  Google Scholar 

  • Misiti V, Vetere F, Mangiacapra A, Behrens H, Cavallo A, Scarlato P, Dingwell DB (2009) Viscosity of high-K basalt from the 5th April 2003 Stromboli paroxysmal explosion. Chem Geol 260:278–285

    Article  Google Scholar 

  • Nakamura M, Shimakita S (1998) Dissolution origin and syn-entrapment compositional change of melt inclusion in plagioclase. Earth Planet Sci Lett 161:119–133

    Article  Google Scholar 

  • Namiki A, Manga M (2006) Influence of decompression rate on the expansion velocity and expansion style of bubbly fluids. J Geophys Res 111:B11208. https://doi.org/10.1029/2005JB004132

    Article  Google Scholar 

  • Navon O, Lyakhovsky V (1998) Vesiculation processes in silicic magmas. In: Gilbert JS, Sparks RSJ (eds) The Physics of Explosive Volcanic Eruptions, Special Publications, vol 145. Geological Society, London, pp 27–50

    Google Scholar 

  • Nishiwaki M, Toramaru A (2019) Inclusion of viscosity into classical homogeneous nucleation theory for water bubbles in silicate melts: reexamination of bubble number density in ascending magmas. J Geophys Res 124:8250–8266. https://doi.org/10.1029/2019JB017796

    Article  Google Scholar 

  • Parfitt EA (2004) A discussion of the mechanisms of explosive basaltic eruptions. J Volcanol Geotherm Res 134:77–107

    Article  Google Scholar 

  • Parfitt EA, Wilson L (2005) Explosive volcanic eruptions -IX. The transition between Hawaiian-style lava fountaining and Strombolian explosive activity. Geophys J Int 121:226–232

    Article  Google Scholar 

  • Pichavant M, Di Carlo I, Le Gac Y, Rotolo S, Scaillet B (2009) Experimental constraints on the deep magma feeding system at Stromboli volcano, Italy. J Petrol 50:601–624

    Article  Google Scholar 

  • Pichavant M, Pompilio M, d’Oriano C, Di Carlo I (2011) Petrography, mineralogy and geochemistry of a primitive pumice from Stromboli: implications for the deep feeding system. Eur J Mineral 23:499–517

    Article  Google Scholar 

  • Pichavant M, Di Carlo I, Rotolo SG, Scaillet B, Burgisser A, Le Gall N, Martel C (2013) Generation of CO2-rich melts during basalt magma ascent and degassing. Contrib Mineral Petrol 166:545–561

    Article  Google Scholar 

  • Pichavant M, Le Gall N, Scaillet B (2019) Gases as precursory signals: experimental simulations, new concepts and models of magma degassing. Advs Volcanol 139–154. https://doi.org/10.1007/11157_2018_35

  • Pichavant M, Di Carlo I, Pompilio M, Le Gall N (2020) Experimental simulation of ascent and fragmentation of Stromboli LP magmas. Abstract Volume 4th Conferenza A. Rittmann, p 139

    Google Scholar 

  • Pioli L, Pistolesi M, Rosi M (2014) Transient explosions at open-vent volcanoes: the case of Stromboli (Italy). Geology 42:863–866

    Article  Google Scholar 

  • Pistolesi M, Rosi M, Pioli L, Renzulli A, Bertagnini A, Andronico D (2008) The paroxysmal event and its deposits. In: AGU, Geophysical Monograph 182, Washington, DC, pp 317–330

    Google Scholar 

  • Pistolesi M, Delle Donne D, Pioli L, Rosi M, Ripepe M (2011) The 15 March 2007 explosive crisis at Stromboli volcano, Italy: assessing physical parameters through a multidisciplinary approach. J Geophys Res 116:B12206. https://doi.org/10.1029/2011JB008527

    Article  Google Scholar 

  • Polacci M, Baker DR, Mancini L, Tromba G, Zanini F (2006) Three-dimensional investigation of volcanic textures by X-ray microtomography and implications for conduit processes. Geophys Res Lett 33:L13312. https://doi.org/10.1029/2006GL026241

    Article  Google Scholar 

  • Polacci M, Baker DR, Mancini L, Favretto S, Hill RJ (2009) Vesiculation in magmas from Stromboli and implications for normal Strombolian activity and paroxysmal explosions in basaltic systems. J Geophys Res Solid Earth 114:B01206

    Article  Google Scholar 

  • Pompilio M, Bertagnini A, Métrich N (2011) Geochemical heterogeneities and dynamics of magmas within the plumbing system of a persistently active volcano: evidence from Stromboli. Bull Volcanol 64:171–194

    Google Scholar 

  • Proussevitch AA, Sahagian DL, Anderson AT (1993) Dynamics of diffusive bubble growth in magmas: isothermal case. J Geophys Res 98:22,283–22,307

    Article  Google Scholar 

  • Proussevitch AA, Sahagian DL, Tsentalovich EP (2007) Statistical analysis of bubble and crystal size distributions: formulations and procedures. J Volcanol Geotherm Res 164:95–111

    Article  Google Scholar 

  • Ripepe M, Harris AJL (2008) Dynamics of the 5 April 2003 explosive paroxysm observed at Stromboli by a near-vent thermal, seismic and infrasonic array. Geophys Res Lett 35(7). https://doi.org/10.1029/2007gl032533

  • Ripepe M, Pistolesi M, Coppola D, Delle Donne D, Genco R, Lacanna G, Laiolo M, Marchetti E, Ulivieri G, Valade S (2017) Forecasting effusive dynamics and decompression rates by magmastatic model at open-vent volcanoes. Sci Rep 7:3885. https://doi.org/10.1038/s41598-017-03833-3

    Article  Google Scholar 

  • Ripepe M, Lacanna G, Pistolesi M, Silengo MC, Aiuppa A, Laiolo M, Massimetti F, Innocenti L, Della Schiava M, Bitetto M, La Monica FP, Nishimura T, Rosi M, Mangione D, Ricciardi A, Genco R, Coppola D, Marchetti E, Delle Donne D (2021) Ground deformation reveals the scale-invariant conduit dynamics driving explosive basaltic eruptions. Nat Com 12:1683. https://doi.org/10.1038/s41467-021-21722-2

    Article  Google Scholar 

  • Rosi M, Bertagnini A, Landi P (2000) Onset of the persistent activity at Stromboli Volcano (Italy). Bull Volcanol 62:294–300

    Article  Google Scholar 

  • Rosi M, Bertagnini A, Harris AJL, Pioli L, Pistolesi M, Ripepe M (2006) A case history of paroxysmal explosion at Stromboli: timing and dynamics of the April 5, 2003 event. Earth Planet Sci Lett 243:594–606

    Article  Google Scholar 

  • Rosi M, Pistolesi M, Bertagnini A, Landi P, Pompilio M, Di Roberto A (2013) Stromboli volcano, Aeolian Islands (Italy): present eruptive activity and hazards. Geol Soc Lond Mem 37:473–490

    Article  Google Scholar 

  • Schiavi F, Kobayashi K, Moriguti T, Nakamura E, Pompilio M, Tiepolo M, Vannucci R (2010) Degassing, crystallization and eruption dynamics at Stromboli: trace element and lithium isotopic evidence from 2003 ashes. Contrib Mineral Petrol 159:541–561

    Article  Google Scholar 

  • Shea T (2017) Bubble nucleation in magmas: A dominantly heterogeneous process ? J Volcanol Geotherm Res 343:155–170

    Article  Google Scholar 

  • Shea T, Hammer JE, Hellebrand E, Mourey AJ, Costa F, First EC, Lynn KJ, Melnik O (2019) Phosphorus and aluminum zoning in olivine: contrasting behavior of two nominally incompatible trace elements. Contrib Mineral Petrol 174:85

    Article  Google Scholar 

  • Slezin YB (2003) The mechanism of volcanic eruptions (a steady-state approach). J Volcanol Geotherm Res 122:7–50

    Article  Google Scholar 

  • Sparks RSJ (1978) The dynamics of bubble formation and growth in magmas: a review and analysis. J Volcanol Geotherm Res 3:1–37

    Article  Google Scholar 

  • Sparks RSJ, Barclay J, Jaupart C, Mader HM, Phililips JC (1994) Physical aspects of magmatic degassing I. Experimental and theoretical constraints on vesiculation. Rev Mineral 30:413–445

    Google Scholar 

  • Toramaru A (1995) Numerical study of nucleation and growth of bubbles in viscous magmas. J Geophys Res 100(B2):1913–1931

    Article  Google Scholar 

  • Toramaru A (2006) BND (bubble number density) decompression rate meter for explosive volcanic eruptions. J Volcanol Geotherm Res 154:303–316

    Article  Google Scholar 

  • Tsuchiyama A (1985) Dissolution kinetics of plagioclase in the melt of the system diopside-albite-anorthite, and origin of dusty plagioclase in andesites. Contrib Mineral Petrol 89:1–16

    Article  Google Scholar 

  • Tsuchiyama A, Takahashi E (1983) Melting kinetics of a plagioclase feldspar. Contrib Mineral Petrol 84:345–354

    Article  Google Scholar 

  • Vergniolle S, Brandeis G (1996) Strombolian explosions 1. A large bubble breaking at the surface of a lava column as a source of sound. J Geophys Res 101, B9:20433–20447

    Article  Google Scholar 

  • Vergniolle S, Gaudemer Y (2015) From reservoirs and conduits to the surface: Review of role of bubbles in driving basaltic eruptions. In: Carey R, Cayol V, Poland M, Weis D (eds) Hawaiian volcanoes: from source to surface, Geophysical Monograph, vol 208, pp 289–321

    Google Scholar 

  • Vergniolle S, Brandeis G, Mareschal J-C (1996) Strombolian explosions 2. Eruption dynamics determined from acoustic measurements. J Geophys Res 101, B9:20449–20466

    Article  Google Scholar 

  • Viccaro M, Cannata A, Cannavò F, De Rosa R, Giuffrida M, Nicotra E, Petrelli M, Sacco G (2021) Shallow conduit dynamics fuel the unexpected paroxysms of Stromboli volcano during the summer 2019. Sci Rep 11:266

  • Wilson L, Head JW (1981) Ascent and eruption of basaltic magma on the Earth and Moon. J Geophys Res 86:2971–3001

    Article  Google Scholar 

  • Zhang Y, Ni H (2010) Diffusion of H, C, and O components in silicate melts. In: Zhang Y, Cherniak DJ (eds) Diffusion in Minerals and Melts, Mineralogical Society of America Reviews in Mineralogy, vol 72, pp 171–225

    Chapter  Google Scholar 

Download references

Acknowledgements

This study was supported by the Labex Voltaire (ANR-10-LABX-100-01), by INGV Progetti Ricerca Libera (timescale of magma transfer within the Stromboli plumbing system) and by the “DisEqm” (quantifying disequilibrium processes in basaltic volcanism) and “Shedding new light on volcanoes: real-time synchrotron X-ray tomography of magmatic phenomena” projects funded by NERC (NE/N018575/1 and NE/M013561/1). Discussions with S. Rotolo helped to design the interaction experiments. E. Deloule is acknowledged for assistance with the SIMS analyses, F. Iacoviello and S. Shah for the tomographic image acquisition and S. Janiec and P. Benoist for the sample preparation. We also acknowledge the use of the X-ray μCT facilities and support provided by Peter D. Lee. The manuscript benefited from stimulating reviews by C. Firth and M. Polacci and editorial advice and suggestions by S. Vergniolle. A. Harris made useful suggestions and recommendations that led to improving the final version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Pichavant.

Additional information

Editorial responsibility: S. Vergniolle

This paper constitutes part of a topical collection: Open-vent volcanoes

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pichavant, M., Di Carlo, I., Pompilio, M. et al. Timescales and mechanisms of paroxysm initiation at Stromboli volcano, Aeolian Islands, Italy. Bull Volcanol 84, 36 (2022). https://doi.org/10.1007/s00445-022-01545-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-022-01545-9

Keywords

Navigation