Skip to main content
Log in

A statistical method for determining the volume of volcanic fall deposits

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Volumes of tephra-fall deposits are difficult to determine due to the commonly poor preservation of proximal and distal areas of the deposit. Typically, these volumes are found by extrapolating thinning trends found from isopach maps drawn for the areas of the deposits that are preserved. However, the construction of isopach contours is dependent on subjective interpretation of field measurements and can be highly variable. Here, we have investigated the spatial correlation relationships of thickness measurements from fall deposits to the vent location to produce a purely statistical method to objectively determine the volume of a fall deposit without the production of isopach maps. Integration of a log linear regression model for thickness measurements with distance from the vent is applied to the field measurements without any prior interpretation, and data and model uncertainty has been accounted for using Bayesian methods. Eruption volumes calculated from our method correspond well to those previously determined by alternative approaches for the deposits of Fogo A, Azores; Askja 1875, Iceland; Santa Maria 1902, Guatemala; and Pinatubo 1991, Philippines. The quantification of uncertainty in field measurements and model error, and the removal of subjectivity incurred in the production of isopach maps suggest that the method presented here can offer benefits in determining the volumes of deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bebbington MS, Cronin SJ (2010) Spatio-temporal hazard estimation in the Auckland volcanic field, New Zealand, with a new event-order model. Bull Volcanol 73:55–72. doi:10.1007/s00445-010-0403-6

    Article  Google Scholar 

  • Bonadonnna C, Costa A (2012) Estimating the volume of tephra deposits: a new simple strategy. Geol 40:415–418. doi:10.1130/G32769.1

    Article  Google Scholar 

  • Bonadonna C, Houghton BF (2005) Total grain-size distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456. doi:10.1007/s00445-004-0386-2

    Article  Google Scholar 

  • Bonadonna C, Ernst GGJ, Sparks RSJ (1998) Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number. J Volcanol Geotherm Res 81:173–187. doi:10.1016/S0377-0273(98)00007-9

    Article  Google Scholar 

  • Burden RE, Phillips JC, Hincks T (2011) Estimating volcanic plume heights from depositional clast size. J Geophys Res 116:B11206. doi:10.1029/2011JB008548

    Article  Google Scholar 

  • Burt ML, Wadge G, Scott WA (1994) Simple stochastic modelling of the eruption history of a basaltic volcano: Nyamuragira, Zaire. Bull Volcanol 56:87–97. doi:10.1007/BF00304104

    Google Scholar 

  • Carey RJ, Houghton BF, Thordarson T (2009) Tephra dispersal and eruption dynamics of wet and dry phases of the 1875 eruption of Askja Volcano, Iceland. Bull Volcanol 72:259–278. doi:10.1007/s00445-009-0317-3

    Article  Google Scholar 

  • Carey S, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125. doi:10.1007/BF01046546

    Article  Google Scholar 

  • Chen MH, Deely JJ (1996) Bayesian analysis for a constrained linear multiple regression problem for predicting the new crop of apples. J Agric Biol Environ Stat 1:467–489

    Article  Google Scholar 

  • Connor L, Connor C (2006) Inversion is the key to dispersion: understanding eruption dynamics by inverting tephra fallout. In: Mader HM, Connor CB, Coles SG, Connor LJ (eds) Statistics in volcanology of special publications of IAVCEI, 1. Geological Society, London, pp 231–242

    Google Scholar 

  • Deligne NI, Coles SG, Sparks RSJ (2010) Recurrence rates of large explosive volcanic eruptions. J Geophys Res 115:B06203. doi:10.1029/2009JB006554

    Article  Google Scholar 

  • Fierstein J, Nathenson M (1992) Another look at the calculation of fallout tephra volume. Bull Volcanol 54:156–167. doi:10.1007/BF00278005

    Article  Google Scholar 

  • Koyaguchi T (1996) Volume estimation of tephra-fall deposits from the June 15, 1991, eruption of Mount Pinatubo by theoretical and geological methods. In: Newhall CG, Punongbayan RS (eds) Fire and mud. Eruptions and lahars of Mount Pinatubo, Philippines. USGS, pp 583–600

    Google Scholar 

  • Lindsay J, Marzocchi W, Jolly G, Constantinescu R, Selva J , Sandri L (2010) Towards real-time eruption forecasting in the Auckland volcanic field: application of bet_ef during the New Zealand national disaster exercise ‘ruaumoko’. Bull Volcanol 72:185–204. doi:10.1007/s00445-009-0311-9

    Article  Google Scholar 

  • Longchamp C, Bonadonna C, Bachman O, Skopelittis A (2011) Characterization of tephra deposits with limited exposure: the example of the two largest explosive eruptions at Nisyros volcano (Greece). Bull Volcanol 73:1337–1352. doi:10.1007/s00445-011-0469-9

    Article  Google Scholar 

  • Magill C, McAneney K, Smith I (2005) Probabilistic assessment of vent locations for the next Auckland volcanic field event. Math Geol 37:227–242. doi:10.1007/s11004-005-1556-2

    Article  Google Scholar 

  • Marzocchi W, Bebbington M (2012) Probabilistic eruption forecasting at short and long time scales. Bull Volcanol 74:1777–1805. doi:10.1007/s00445-012-0633-x

    Article  Google Scholar 

  • Marzocchi W, Zaccarelli L (2006) A quantitative model for the time-size distribution of eruptions. J Geophys Res 11:B04204. doi:10.1029/2005JB003709

    Article  Google Scholar 

  • Mason BG, Pyle DM, Oppenheimer C (2004) The size and frequency of the largest explosive eruptions on Earth. Bull Volcanol 66:735–748. doi:10.1007/s00445-004-0355-9

    Article  Google Scholar 

  • Passarelli L, Sansò B, Sandri L, Marzocchi W (2010) Testing forecasts of a new Bayesian time-predictable model of eruption occurrence. J Volcanol Geotherm Res 198:57–75. doi:10.1016/j.jvolgeores.2010.08.011

    Article  Google Scholar 

  • Pyle DM (1989) The thickness, volume and grain size of tephra fall deposits. Bull Volcanol 51:1–15. doi:10.1007/BF01086757

    Article  Google Scholar 

  • Pyle DM (1998) Forecasting sizes and repose times of future extreme volcanic events. Geol 26:367–370. doi:10.1130/0091-7613(1998)026<0367:FSARTO>2.3.CO;2

    Article  Google Scholar 

  • Rhoades DA, Dowrick DJ, Wilson CJN (2002) Volcanic hazard in New Zealand: scaling and attenuation relations for tephra fall deposits from Taupo Volcano. Nat Hazards 26:147–174. doi:10.1023/A:1015608732356

    Article  Google Scholar 

  • Selva J, Orsi G, Di Vito M, Marzocchi W, Sandri L (2012) Probability hazard map for future vent opening at the Campi Flegrei Caldera, Italy. Bull Volcanol 74:497–510. doi:10.1007/s00445-011-0528-2

    Article  Google Scholar 

  • Sigurdsson H, Carey S, Espíndola J (1984) The 1982 eruptions of El Chichón Volcano, Mexico: stratigraphy of pyroclastic deposits. J Volcanol Geotherm Res 23:11–37. doi:10.1016/0377-0273(84)90055-6

    Article  Google Scholar 

  • Sparks RSJ, Wilson L, Sigurdsson H (1981) The pyroclastic deposits of the 1875 eruption of Askja, Iceland. Phil Trans R Soc Lond 299:241–273

    Article  Google Scholar 

  • Sparks R, Carey S, Sigurdsson H (1991) Sedimentation from gravity currents generated by turbulent plumes. Sedimentology 38:839–856

    Article  Google Scholar 

  • Sparks RSJ, Bursik MI, Carey S, Gilbert JS, Glaze LS, Sigurdsson H, Woods AW (1997) Volcanic plumes. Wiley, New York

    Google Scholar 

  • Walker GPL (1973) Explosive volcanic eruptions—a new classification scheme. Geol Rundsch 62:431–46. doi:10.1007/BF01840108

    Article  Google Scholar 

  • Walker GPL (1980) The Taupo pumice: product of the most powerful known (ultraplinian) eruption? J Volcanol Geotherm Res 8:69–94. doi:10.1016/0377-0273(80)90008-6

    Article  Google Scholar 

  • Walker GPL, Croasdale R (1970) Two Plinian-type eruptions in the Azores. J Geolog Soc 127:17–55. doi:10.1144/gsjgs.127.1.0017

    Article  Google Scholar 

  • Williams SN, Self S (1983) The October 1902 Plinian eruption of Santa Maria Volcano, Guatemala. J Volcanol Geotherm Res 16:33–56. doi:10.1016/0377-0273(83)90083-5

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are given to Prof RSJ Sparks and two anonymous reviewers for their helpful comments on the initial drafts of this manuscript. Rose Burden was funded by the a European Research Grant, Voldies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Burden.

Additional information

Editorial responsibility: J. Taddeucci

Electronic supplementary material

Below is the link to the electronic supplementary material.

(R 5.28 kb)

(txt 2.35 kb)

(PDF 6.69 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burden, R.E., Chen, L. & Phillips, J.C. A statistical method for determining the volume of volcanic fall deposits. Bull Volcanol 75, 707 (2013). https://doi.org/10.1007/s00445-013-0707-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-013-0707-4

Keywords

Navigation