Skip to main content

Advertisement

Log in

How does the presence of a conspecific individual change the behavioral game that a predator plays with its prey?

  • Highlighted Student Research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Behavioral games predators play among themselves may have profound effects on behavioral games predators play with their prey. We studied the behavioral game between predators and prey within the framework of social foraging among predators. We tested how conspecific interactions among predators (little egret) change the predator–prey behavioral game and foraging success. To do so, we examined foraging behavior of egrets alone and in pairs (male and female) in a specially designed aviary consisting of three equally spaced pools with identical initial prey (comet goldfish) densities. Each pool was comprised of a risky microhabitat, rich with food, and a safe microhabitat with no food, forcing the fish to trade off food and safety. When faced with two versus one egret, we found that fish significantly reduced activity in the risky habitat. Egrets in pairs suffered reduced foraging success (negative intraspecific density dependence) and responded to fish behavior and to their conspecific by changing their visiting regime at the different pools—having shorter, more frequent visits. The time egret spent on each visit allowed them to match their long-term capture success rate across the environment to their capture success rate in the pool, which satisfies one aspect of optimality. Overall, egrets in pairs allocated more time for foraging and changed their foraging tactics to focus more on fish under cover and fish ‘peeping’ out from their shelter. These results suggest that both prey and predator show behavioral flexibility and can adjust to changing conditions as needed in this foraging game.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson TL (2016) Predation risk between cannibalistic aeshnid dragonflies influences their functional response on a larval salamander prey. J Zool 300(3):221–227

    Article  Google Scholar 

  • Anholt BR, Werner E, Skelly DK (2000) Effect of food and predators on the activity of four larval ranid frogs. Ecology 81:3509–3521. doi:10.2307/177510

    Article  Google Scholar 

  • Beauchamp G (2013) Social predation: how group living benefits predators and prey. Elsevier, Amsterdam

    Google Scholar 

  • Beauchamp G, Giraldeau LA (1997) Patch exploitation in a producer-scrounger system: test of a hypothesis using flocks of spice finches (Lonchura punctulata). Behav Ecol 8(1):54–59. doi:10.1093/beheco/8.1.54

    Article  Google Scholar 

  • Bertram BCR (1978) Living in groups: predators and prey. In: Krebs JR, Davies NB (eds) Behav Ecol. Blackwell, Oxford, pp 64–96

    Google Scholar 

  • Briffa M, Sneddon LU (2007) Physiological constraints on contest behaviour. Funct Ecol 21:627–637. doi:10.1111/j.1365-2435.2006.01188.x

    Article  Google Scholar 

  • Brown JS, Laundré JW, Gurung M (1999) The ecology of fear: optimal foraging, game theory, and trophic interactions. J Mammal. doi:10.2307/1383287

    Google Scholar 

  • Carthey AJ, Banks PB (2015) Foraging in groups affects giving-up densities: solo foragers quit sooner. Oecologia 178(3):707–713. doi:10.1007/s00442-015-3274-x

    Article  PubMed  Google Scholar 

  • Cezilly F, Boy V (1988) Age related differences in foraging little egrets, egretta garzetta. Colonial Waterbirds. doi:10.2307/1521175

    Google Scholar 

  • Cezilly F, Boy V, Hafner H (1990) Group foraging in little egrets (egretta garzetta): from field evidence to experimental investigation. Behav Processes 21:69–80. doi:10.1016/0376-6357(90)90016-9

    Article  CAS  PubMed  Google Scholar 

  • Charnov EL (1976) Optimal foraging, the marginal value theorem. Theor Popul Biol 9:129–136. doi:10.1016/0040-5809(76)90040-X

    Article  CAS  PubMed  Google Scholar 

  • del Hoyo J, Elliott A, Sargatal J (1992) Handbook of the birds of the world, vol 1. Lynx Edicions, Barcelona

    Google Scholar 

  • Dunlop R, Millsopp S, Laming P (2006) Avoidance learning in goldfish (carassius auratus) and trout (oncorhynchus mykiss) and implications for pain perception. Appl Anim Behav Sci 97:255–271. doi:10.1016/j.applanim.2005.06.018

    Article  Google Scholar 

  • Embar K, Raveh A, Hoffmann I, Kotler BP (2014a) Predator facilitation or interference: a game of vipers and owls. Oecologia 174:1301–1309. doi:10.1007/s00442-013-2760-2

    Article  PubMed  Google Scholar 

  • Embar K, Raveh A, Burns D, Kotler BP (2014b) To dare or not to dare? risk management by owls in a predator–prey foraging game. Oecologia 175:825–834. doi:10.1007/s00442-014-2956-0

    Article  PubMed  Google Scholar 

  • Enstipp MR, Grémillet D, Jones DR (2007) Investigating the functional link between prey abundance and seabird predatory performance. Mar Ecol Prog Ser 331:267–279. doi:10.3354/meps331267

    Article  Google Scholar 

  • Evans EW (1991) Intra versus interspecific interactions of ladybeetles (coleoptera: Coccinellidae) attacking aphids. Oecologia 87:401–408

    Article  PubMed  Google Scholar 

  • Godin JGJ, Classon LJ, Abrahams MV (1988) Group vigilance and shoal size in a small characin fish. Behaviour. doi:10.1163/156853988X00584

    Google Scholar 

  • Gotmark F, Winkler DW, Andersson M (1986) Flock-feeding on fish schools increases individual success in gulls. Nature 319:589–591. doi:10.1038/319589a0

    Article  CAS  PubMed  Google Scholar 

  • Guillemain M, Fritz H (2002) Temporal variation in feeding tactics: exploring the role of competition and predators in wintering dabbling ducks. Wildl Biol 8:81–90

    Google Scholar 

  • Hafner H, Dugan P, Kersten M, Pineau O, Wallace J (1993) Flock feeding and food intake in little egrets egretta garzetta and their effects on food provisioning and reproductive success. Ibis 135:25–32. doi:10.1111/j.1474-919X.1993.tb02806.x

    Article  Google Scholar 

  • Holopainen IJ, Tonn WM, Paszkowski CA (1997) Tales of two fish: the dichotomous biology of crucian carp (carassius carassius (L.)) in northern europe. Ann Zool Fenn 34:1–22

    Google Scholar 

  • Hugie DM (2003) The waiting game: a “battle of waits” between predator and prey. Behav Ecol 14:807–817. doi:10.1093/beheco/arg054

    Article  Google Scholar 

  • Ingrum J, Nordell S, Dole J (2010) Effects of habitat complexity and group size on perceived predation risk in goldfish (carassius auratus). Ethol Ecol Evol 22:119–132. doi:10.1080/03949371003707638

    Article  Google Scholar 

  • Katz MW, Abramsky Z, Kotler BP, Altstein O, Rosenzweig ML (2010) Playing the waiting game: predator and prey in a test environment. Evol Ecol Res 12:793–801

    Google Scholar 

  • Katz MW, Abramsky Z, Kotler BP, Rosenzweig ML, Alteshtein O, Vasserman G (2013) Optimal foraging of little egrets and their prey in a foraging game in a patchy environment. Am Nat 181:381–395. doi:10.1086/669156

    Article  CAS  PubMed  Google Scholar 

  • Katz MW, Abramsky Z, Kotler BP, Roth I, Altstein O, Rosenzweig ML (2014a) A predator–prey behavioural game: how does number of food patches influence foraging tactics? Evol Ecol Res 16(1):19–35

    Google Scholar 

  • Katz MW, Abramsky Z, Kotler BP, Roth I, Livne S, Altstein O, Rosenzweig ML (2014b) A predator-prey foraging game: how does prey density influence tactics? Evol Ecol Res 16:323–335

    Google Scholar 

  • Katz MW, Abramsky Z, Kotler BP, Altstein O, Roth I, Rosenzweig ML, Klimovitsky C (2016) Comparing the non-lethal and lethal effects of predation risk on goldfish anti-predatory behavior. Isr J Ecol Evol. doi:10.1080/15659801.2015.1059720

    Google Scholar 

  • Komiyama T, Kobayashi H, Tateno Y, Inoko H, Gojobori T, Ikeo K (2009) An evolutionary origin and selection process of goldfish. Gene 430:5–11. doi:10.1016/j.gene.2008.10.019

    Article  CAS  PubMed  Google Scholar 

  • Kotler BP, Brown J, Mukherjee S, Berger-Tal O, Bouskila A (2010) Moonlight avoidance in gerbils reveals a sophisticated interplay among time allocation, vigilance and state-dependent foraging. Proc Biol Sci 277:1469–1474. doi:10.1098/rspb.2009.2036

    Article  PubMed  PubMed Central  Google Scholar 

  • Krama T, Bērziņš A, Rytkönen S, Rantala MJ, Wheatcroft D, Krams I (2012) Linking anti-predator behaviour and habitat quality: group effect in nest defence of a passerine bird. Acta Ethol 15:127–134. doi:10.1007/s10211-011-0117-6

    Article  Google Scholar 

  • Kratina P, Vos M, Bateman A, Anholt BR (2009) Functional responses modified by predator density. Oecologia 159:425–433. doi:10.1007/s00442-008-1225-5

    Article  PubMed  Google Scholar 

  • Krause J, Godin JJ (1995) Predator preferences for attacking particular prey group sizes: consequences for predator hunting success and prey predation risk. Anim Behav 50:465–473. doi:10.1006/anbe.1995.0260

    Article  Google Scholar 

  • Kuhlmann ML, Hines AH (2005) Density-dependent predation by blue crabs Callinectes sapidus on natural prey populations of infaunal bivalves. Mar Ecol-Prog Sers 295:215–228. doi:10.3354/meps295215

    Article  Google Scholar 

  • Kushlan JA (1976) Feeding behavior of north american herons. Auk 93:86–94

    Google Scholar 

  • Lima SL (2002) Putting predators back into behavioral predator–prey interactions. Trends Ecol Evol 17:70–75. doi:10.1016/S0169-5347(01)02393-X

    Article  Google Scholar 

  • Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640. doi:10.1139/z90-092

    Article  Google Scholar 

  • Luttbeg B, Hammond JI, Sih A (2009) Dragonfly larvae and tadpole frog space use games in varied light conditions. Behav Ecol 20:13–21. doi:10.1093/beheco/arn107

    Article  Google Scholar 

  • Nilsson AP (2001) Predator behaviour and prey density: evaluating density‐dependent intraspecific interactions on predator functional responses. J Anim Ecol 70(1):14–19. doi:10.1111/j.1365-2656.2001.00472.x

    Article  Google Scholar 

  • Nota Y (2003) Effects of body size and sex on foraging territoriality of the little egret (egretta garzetta) in Japan. Auk 120:791–798. doi:10.2307/4090109

    Article  Google Scholar 

  • Peckarsky BL, Abrams PA, Bolnick DI, Dill LM, Grabowski JH, Luttbeg B, Orrock JL, Peacor SD, Preisser EL, Schmitz OJ (2008) Revisiting the classics: considering nonconsumptive effects in textbook examples of predator-prey interactions. Ecology 89:2416–2425. doi:10.1890/07-1131.1

    Article  PubMed  Google Scholar 

  • Pribylova L, Berec L (2015) Predator interference and stability of predator-prey dynamics. J Math Biol 71:301–323. doi:10.1007/s00285-014-0820-9

    Article  PubMed  Google Scholar 

  • Pulliam HR (1973) On the advantages of flocking. J Theor Biol 38(2):419–422. doi:10.1016/0022-5193(73)90184-7

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig ML, MacArthur RH (1963) Graphical representation and stability conditions of predator-prey interactions. Am Nat 97:209–223

    Article  Google Scholar 

  • Rosenzweig ML, Abramsky Z, Subach A (1997) Safety in numbers: sophisticated vigilance by Allenby’s gerbil. PNAS 94(11):5713–5715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutten AL, Oosterbeek K, Van der Meer J, Verhulst S, Ens BJ (2010) Experimental evidence for interference competition in oystercatchers, haematopus ostralegus I. captive birds. Behav Ecol 21:1251–1260. doi:10.1093/beheco/arq129

    Article  Google Scholar 

  • Shirihai H (1996) The birds of Israel. Academic Press, London

    Google Scholar 

  • Sih A (1998) Game theory and predator–prey response races. In: Dugatkin LA, Reeve HK (eds) Game theory and the study of animal behavior. Oxford University Press, New York, pp 221–238

    Google Scholar 

  • Sih A, Englund G, Wooster D (1998) Emergent impacts of multiple predators on prey. Trends Ecol Evol 13:350–355. doi:10.1016/S0169-5347(98)01437-2

    Article  CAS  PubMed  Google Scholar 

  • St Juliana JR, Kotler BP, Brown JS, Mukherjee S, Bouskila A (2011) The foraging response of gerbils to a gradient of owl numbers. Evol Ecol Res 13:869–878

    Google Scholar 

  • Stenberg M, Persson A (2005) The effects of spatial food distribution and group size on foraging behaviour in a benthic fish. Behav Processes 70:41–50. doi:10.1016/j.beproc.2005.04.003

    Article  PubMed  Google Scholar 

  • van Oers K, Klunder M, Drent PJ (2005) Context dependence of personalities: risk-taking behavior in a social and a nonsocial situation. Behav Ecol 16:716–723. doi:10.1093/beheco/ari045

    Article  Google Scholar 

  • Vance-Chalcraft HD, Soluk DA, Ozburn N (2004) Is prey predation risk influenced more by increasing predator density or predator species richness in stream enclosures? Oecologia 139:117–122. doi:10.1007/s00442-003-1484-0

    Article  PubMed  Google Scholar 

  • Weir LK, Grant JW (2004) The causes of resource monopolization: interaction between resource dispersion and mode of competition. Ethology 110:63–74. doi:10.1046/j.1439-0310.2003.00948.x

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Israel Science Foundation grant 5/14 to Zvika Abramsky. RV would like to thank Vijayan Sundararaj for valuable comments that helped improve the manuscript.

Author contribution statement

ZA originally conceived and designed the experimental system. RV and OA performed the experiments. RV analyzed the data and wrote the manuscript. BPK and MLR provided important contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reut Vardi.

Ethics declarations

Ethical approval

All applicable institutional guidelines for the care and use of animals were followed. Protocols for animal maintenance and experimental treatments were conducted in accordance with the ethical guidelines for animal research established and approved by the University Committee for the Ethical Care and Use of Animals in Experiments at Ben-Gurion University of the Negev (Authorization Number IL-49-10-2010 and IL-14-02-2015). Egrets were captured and released soon after in accordance with the Israel Nature and National Parks Protection Authority (Authorization Number 39323 and 40394).

Additional information

Communicated by Peter Banks.

Our study focuses on predator-prey behavioral games while considering the game between predators themselves. We follow both players' behavior and reveal the dynamics of a game modulated by prey response.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vardi, R., Abramsky, Z., Kotler, B.P. et al. How does the presence of a conspecific individual change the behavioral game that a predator plays with its prey?. Oecologia 184, 597–607 (2017). https://doi.org/10.1007/s00442-017-3884-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-017-3884-6

Keywords

Navigation