Skip to main content
Log in

Seasonal stomatal behavior of a common desert shrub and the influence of plant neighbors

  • Physiological ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Stomata simultaneously regulate plant carbon gain and water loss, and patterns of stomatal conductance (g s) provide insight into water use strategies. In arid systems, g s varies seasonally based on factors such as water availability and temperature. Moreover, the presence and species identity of neighboring plants likely affects g s of the focal plant by altering available soil water and microclimate conditions. We investigated stomatal behavior in Larrea tridentata, a drought-tolerant, evergreen shrub occurring throughout the arid southwestern United States. We measured g s in Larrea over multiple seasons in the presence of neighbors representing different woody species. The data were analyzed in the context of a commonly used phenomenological model that relates g s to vapor pressure deficit (D) to understand spatial and temporal differences in stomatal behavior. We found that g s in Larrea was affected by neighborhood association, and these effects varied seasonally. The greatest effect of neighborhood association on g s occurred during the winter period, where Larrea growing alone (without neighbors) had higher g s compared to Larrea growing with neighbors. Larrea’s stomatal sensitivity to D and reference conductance (i.e., g s at D = 1 kPa) also differed significantly among different neighbor associations. Random effects indicated reference g s varied over short time scales (daily), while stomatal sensitivity showed little daily or seasonal variation, but was notably affected by neighbor associations such that neighboring species, especially trees, reduced Larrea’s sensitivity to D. Overall, seasonal dynamics and neighborhood conditions appear critical to understanding temporal and spatial variation in Larrea’s physiological behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Addington RN, Mitchell RJ, Oren R, Donovan LA (2004) Stomatal sensitivity to vapor pressure deficit and its relationship to hydraulic conductance in Pinus palustris. Tree Physiol 24:561–569

    Article  PubMed  Google Scholar 

  • Addington RN, Donovan LA, Mitchell RJ et al (2006) Adjustments in hydraulic architecture of Pinus palustris maintain similar stomatal conductance in xeric and mesic habitats. Plant Cell Environ 29:535–545. doi:10.1111/j.1365-3040.2005.01430.x

    Article  CAS  PubMed  Google Scholar 

  • Armas C, Pugnaire FI (2005) Plant interactions govern population dynamics in a semi-arid plant community. J Ecol 93:978–989. doi:10.1111/j.1365-2745.2005.01033.x

    Article  Google Scholar 

  • Barbour M (1969) Age and space distribution of the desert shrub Larrea divaricata. Ecology 50:679–685

    Article  Google Scholar 

  • Barker DH, Vanier C, Naumburg E et al (2006) Enhanced monsoon precipitation and nitrogen deposition affect leaf traits and photosynthesis differently in spring and summer in the desert shrub Larrea tridentata. New Phytol 169:799–808

    Article  CAS  PubMed  Google Scholar 

  • Briones O, Montana C, Ezcurra E (1996) Competition between three Chihuahuan desert species: evidence from plant size-distance relations and root distribution. J Veg Sci 7:453–460

    Article  Google Scholar 

  • Briones O, Montana C, Ezcurra E (1998) Competition intensity as a function of resource availability in a semiarid ecosystem. Oecologia 116:365–372. doi:10.1007/s004420050599

    Article  Google Scholar 

  • Brisson J, Reynolds JF (1994) The effect of neighbors on root distribution in a Creosotebush (Larrea tridentata) population. Ecology 75:1693–1702

    Article  Google Scholar 

  • Buckley TN (2005) The control of stomata by water balance. New Phytol 168:275–292. doi:10.1111/j.1469-8137.2005.01543.x

    Article  CAS  PubMed  Google Scholar 

  • Buckley TN, Mott KA, Farquhar GD (2003) A hydromechanical and biochemical model of stomatal conductance. Plant Cell Environ 26:1767–1785

    Article  CAS  Google Scholar 

  • Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78:1958–1965

    Article  Google Scholar 

  • Casper BB, Jackson RB (1997) Plant competition underground. Annu Rev Ecol Syst 28:545–570. doi:10.1146/annurev.ecolsys.28.1.545

    Article  Google Scholar 

  • Chesson P, Gebauer RLE, Schwinning S et al (2004) Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141:236–253. doi:10.1007/s00442-004-1551-1

    Article  PubMed  Google Scholar 

  • Comstock JP (2000) Variation in hydraulic architecture and gas-exchange in two desert sub-shrubs, Hymenoclea salsola (T. & G.) and Ambrosia dumosa (Payne). Oecologia 125:1–10. doi:10.1007/PL00008879

    Article  Google Scholar 

  • Damour G, Simonneau T, Cochard H, Urban L (2010) An overview of models of stomatal conductance at the leaf level. Plant Cell Environ 33:1419–1438. doi:10.1111/j.1365-3040.2010.02181.x

    PubMed  Google Scholar 

  • Domec J-C, Noormets A, King JS et al (2009) Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapour pressure deficit as soil dries in a drained loblolly pine plantation. Plant Cell Environ 32:980–991. doi:10.1111/j.1365-3040.2009.01981.x

    Article  PubMed  Google Scholar 

  • Ehleringer JR, Phillips SL, Schuster WSF, Sandquist DR (1991) Differential utilization of summer rains by desert plants. Oecologia 88:430–434. doi:10.1007/BF00317589

    Article  Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33:317–345

    Article  CAS  Google Scholar 

  • Fischer RA, Turner NC (1978) Plant productivity in the arid and semiarid zones. Annu Rev Plant Physiol 29:277–317

    Article  CAS  Google Scholar 

  • Fowler N (1986) The role of competition in plant communities in arid and semiarid regions. Annu Rev Ecol Syst 17:89–110

    Article  Google Scholar 

  • Franco A, Soyza A, Virginia R et al (1994) Effects of plant size and water relations on gas exchange and growth of the desert shrub Larrea tridentata. Oecologia 97:171–178

    Article  Google Scholar 

  • Gebauer RLE, Schwinning S, Ehleringer JR (2010) Interspecific competition and resource pulse utilization in a cold desert community. Ecology 83:2602–2616

    Article  Google Scholar 

  • Gelman A, Carlin JB, Stern HS et al (2013) Bayesian data analysis. CRC, Baton Rouge

    Google Scholar 

  • Hall SJ, Sponseller RA, Grimm NB et al (2011) Ecosystem response to nutrient enrichment across an urban air shed in the Sonoran Desert. Ecol Appl 21:640–660

    Article  PubMed  Google Scholar 

  • Hamerlynck EP, Mcauliffe JR, Smith SD (2000) Effects of surface and sub-surface soil horizons on the seasonal performance of Larrea tridentata (creosotebush). Funct Ecol 14:596–606. doi:10.1046/j.1365-2435.2000.00469.x

    Article  Google Scholar 

  • Héroult A, Lin YS, Bourne A et al (2013) Optimal stomatal conductance in relation to photosynthesis in climatically contrasting Eucalyptus species under drought. Plant Cell Environ 36:262–274. doi:10.1111/j.1365-3040.2012.02570.x

    Article  PubMed  Google Scholar 

  • Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908

    Article  CAS  PubMed  Google Scholar 

  • Holmgren M, Scheffer M, Huston MA (2013) The interplay of facilitation and competition in plant communities. Ecology 78:1966–1975

    Article  Google Scholar 

  • Hultine KR, Scott RL, Cable WL et al (2004) Hydraulic redistribution by a dominant, warm-desert phreatophyte: seasonal patterns and response to precipitation pulses. Funct Ecol 18:530–538

    Article  Google Scholar 

  • Huxman TE, Wilcox BP, Breshears DD et al (2005) Ecohydrological implications of woody plant encroachment. Ecology 86:308–319

    Article  Google Scholar 

  • Ignace DD, Huxman TE (2009) Limitations to photosynthetic function across season in Larrea tridentata (creosotebush) growing on contrasting soil surfaces in the Sonoran Desert. J Arid Environ 73:626–633. doi:10.1016/j.jaridenv.2009.01.009

    Article  Google Scholar 

  • Jones HG (1998) Stomatal control of photosynthesis and transpiration. J Exp Bot 49:387–398

    Article  Google Scholar 

  • Kaufmann MR (1982) Leaf conductance as a function of photosynthetic photon flux density and absolute humidity difference from leaf to air. Plant Physiol 69:1018–1022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leuning R (1995) A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ 18:339–355

    Article  CAS  Google Scholar 

  • Lunn D, Spiegelhalter D, Thomas A, Best N (2009) The BUGS project: evolution, critique and future directions (with discussion). Stat Med 28:3049–3082

    Article  Google Scholar 

  • McAuliffe JR, Hamerlynck EP (2010) Perennial plant mortality in the Sonoran and Mojave deserts in response to severe, multi-year drought. J Arid Environ 74:885–896. doi:10.1016/j.jaridenv.2010.01.001

    Article  Google Scholar 

  • Medlyn BE, Duursma RA, Eamus D et al (2011) Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob Chang Biol 17:2134–2144. doi:10.1111/j.1365-2486.2010.02375.x

    Article  Google Scholar 

  • Meinzer FC, Rundel PW, Sharifi MR, Nilsen ET (1986) Turgor and osmotic relations of the desert shrub Larrea tridentata. Plant Cell Environ 9:467–475. doi:10.1111/j.1365-3040.1986.tb01762.x

    Article  Google Scholar 

  • Meinzer FC, Sharifi MR, Nilsen ET, Rundel PW (1988) Effects of manipulation of water and nitrogen regime on the water relations of the desert shrub Larrea tridentata. Oecologia 77:480–486

    Article  Google Scholar 

  • Monson RK, Smith SD (1982) Seasonal water potential components of Sonoran Desert plants. Ecology 63:113–123

    Article  Google Scholar 

  • Montana C, Cavagnaro B, Briones O (1995) Soil water use by co-existing shrubs and grasses in the Southern Chihuahuan Desert, Mexico. J Arid Environ 31:1–13

    Article  Google Scholar 

  • Monteith JL (1995) Accommodation between transpiring vegetation and the convective boundary layer. J Hydrol 166:251–263

    Article  Google Scholar 

  • Neilson RP (1995) A model for predicting continental-scale vegetation distribution and water balance. Ecol Appl 5:362–385

    Article  Google Scholar 

  • Nilsen ET, Sharifi MR, Rundel PW et al (1983) Diurnal and seasonal water relations of the desert phreatophyte Prosopis glandulosa (honey mesquite) in the Sonoran Desert of California. Ecology 64:1381–1393

    Article  Google Scholar 

  • Notaro M, Liu Z, Gallimore RG et al (2010) Complex seasonal cycle of ecohydrology in the Southwest United States. J Geophys Res 115:G4034. doi:10.1029/2010JG001382

    Article  Google Scholar 

  • Novoplansky A, Goldberg DE (2001) Effects of water pulsing on individual performance and competitive hierarchies in plants. J Veg Sci 12:199–208

    Article  Google Scholar 

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51

    Article  Google Scholar 

  • Ocheltree TW, Nippert JB, Prasad PVV (2014) Stomatal responses to changes in vapor pressure deficit reflect tissue-specific differences in hydraulic conductance. Plant Cell Environ 37:132–139. doi:10.1111/pce.12137

    Article  CAS  PubMed  Google Scholar 

  • Odening WR, Strain BR, Oechel W (1974) The effect of decreasing water potential on net CO2 exchange of intact desert shrubs. Ecology 55:1086–1095

    Article  Google Scholar 

  • Ogle K, Barber JJ (2008) Bayesian data-model integration in plant physiological and ecosystem ecology. Prog Bot 69:281–311

    Article  Google Scholar 

  • Ogle K, Reynolds JF (2002) Desert dogma revisited: coupling of stomatal conductance and photosynthesis in the desert shrub, Larrea tridentata. Plant Cell Environ 25:909–921. doi:10.1046/j.1365-3040.2002.00876.x

    Article  Google Scholar 

  • Ogle K, Lucas RW, Bentley LP et al (2012) Differential daytime and night-time stomatal behavior in plants from North American deserts. New Phytol 194:464–476. doi:10.1111/j.1469-8137.2012.04068.x

    Article  PubMed  Google Scholar 

  • Oren R, Sperry JS, Katul GG et al (1999) Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ 22:1515–1526

    Article  Google Scholar 

  • Pataki DE, Huxman TE, Jordan DN et al (2000) Water use of two Mojave Desert shrubs under elevated. Glob Chang Biol 6:889–897

    Article  Google Scholar 

  • Phillips DL, Macmahon JA (1978) Gradient analysis of a Sonoran Desert bajada. Southwest Nat 23:669–679

    Article  Google Scholar 

  • Prieto I, Armas C, Pugnaire FI (2012) Water release through plant roots: new insights into its consequences at the plant and ecosystem level. New Phytol 193:830–841. doi:10.1111/j.1469-8137.2011.04039.x

    Article  PubMed  Google Scholar 

  • Reynolds JF, Virginia RA, Kemp PR et al (1999) Impact of drought on desert shrubs: effects of seasonality and degree of resource island development. Ecol Monogr 69:69–106

    Article  Google Scholar 

  • Reynolds JF, Kemp PR, Tenhunen JD (2000) Effects of long-term rainfall variability on evapotranspiration and soil water distribution in the Chihuahuan Desert: a modeling analysis. Plant Ecol 150:145–159

    Article  Google Scholar 

  • Reynolds JF, Kemp PR, Ogle K et al (2004) Modifying the “pulse-reserve” paradigm for deserts of North America: precipitation pulses, soil water and plant responses. Oecologia 141:194–210. doi:10.1007/S00442-004-1524-4

    Article  PubMed  Google Scholar 

  • Rodriguez-iturbe I, Porporato A, Laio F, Ridol L (2001) Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. I. Scope and general outline. Adv Water Resour 24:695–705

    Article  Google Scholar 

  • Rogiers SY, Greer DH, Hatfield JM et al (2012) Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid. Tree Physiol 32:249–261. doi:10.1093/treephys/tpr131

    Article  CAS  PubMed  Google Scholar 

  • Schade JD, Sponseller R, Collins SL, Stiles A (2003) The influence of Prosopis canopies on understorey vegetation: effects of landscape position. J Veg Sci 14:743. (doi:10.1658/1100-9233(2003)014[0743:TIOPCO]2.0.CO;2)

    Google Scholar 

  • Schwinning S, Sala OE (2004) Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141:211–220. doi:10.1007/s00442-004-

    Article  PubMed  Google Scholar 

  • Schwinning S, Weiner J (1998) Mechanisms determining the degree of size asymmetry in competition among plants. Oecologia 113:447–455. doi:10.1007/s004420050397

    Article  Google Scholar 

  • Shreve F (1942) The desert vegetation of North America. Bot Rev 8:195–246

    Article  Google Scholar 

  • Silvertown J (2004) Plant coexistence and the niche. Trends Ecol Evol 19:605–611. doi:10.1016/j.tree.2004.09.003

    Article  Google Scholar 

  • Smith NG, Dukes JS (2013) Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Glob Chang Biol 19:45–63. doi:10.1111/j.1365-2486.2012.02797.x

    Article  PubMed  Google Scholar 

  • Smith SD, Herr CA, Leary KL, Piorkowski JM (1995) Soil-plant water relations in a Mojave Desert mixed shrub community: a comparison of three geomorphic surfaces. J Arid Environ 29:339–351

    Article  Google Scholar 

  • Spiegelhalter D, Thomas A, Best N, Lunn D (2003) WinBUGS version 3.03 user manual. Medical Research Council Biostatistics, Cambridge, UK

  • Suzan H, Nabhan GP, Patten DT (1996) The importance of Olenya tesota as a nurse plant in the Sonoran Desert. J Veg Sci 7:635–644

    Article  Google Scholar 

  • Suzan H, Patten DT, Nabhan GP et al (1997) Exploitation and conservation of ironwood (olneya tesota) in the Sonoran Desert. Ecol Appl 7:948–957

    Article  Google Scholar 

  • Suzán-Azpiri H, Sosa VJ (2006) Comparative performance of the giant cardon cactus (Pachycereus pringlei) seedlings under two leguminous nurse plant species. J Arid Environ 65:351–362. doi:10.1016/j.jaridenv.2005.08.002

    Article  Google Scholar 

  • Szarek SR, Woodhouse RM (1977) Ecophysiological studies of Sonoran Desert plants. II. Seasonal photosynthesis patterns and primary production of Ambrosia deltoidea and Olneya tesota. Oecologia 28:365–375

    Article  Google Scholar 

  • Tardieu F, Davies WJ (1983) Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants. Plant Cell Environ 16:341–349

    Article  Google Scholar 

  • Tardieu F, Simonneau T (1998) Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. J Exp Bot 49:419–432

    Article  Google Scholar 

  • Tewksbury JJ, Lloyd JD (2001) Positive interactions under nurse-plants: spatial scale, stress gradients and benefactor size. Oecologia 127:425–434. doi:10.1007/s004420000614

    Article  Google Scholar 

  • Thomas DS, Eamus D (1999) The influence of predawn leaf water potential on stomatal responses to atmospheric water content at constant Ci and on stem hydraulic conductance and foliar ABA concentrations. J Exp Bot 50:243–251. doi:10.1093/jxb/50.331.243

    Article  CAS  Google Scholar 

  • Tinoco-Ojanguren C (2008) Diurnal and seasonal patterns of gas exchange and carbon gain contribution of leaves and stems of Justicia californica in the Sonoran Desert. J Arid Environ 72:127–140. doi:10.1016/j.jaridenv.2007.06.004

    Article  Google Scholar 

  • Tuzet A, Perrier A, Leuning R (2003) A coupled model of stomatal conductance, photosynthesis, and transpiration. Plant Cell Environ 26:1097–1117

    Article  Google Scholar 

  • Ward EJ, Oren R, Sigurdsson BD et al (2008) Fertilization effects on mean stomatal conductance are mediated through changes in the hydraulic attributes of mature Norway spruce trees. Tree Physiol 28:579–596

    Article  PubMed  Google Scholar 

  • Western Regional Climate Center (WRCC) (2013) Western US climate historical summaries. Fountain Hills, AZ (023190). (http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?az3190)

  • Xu L, Baldocchi DD (2003) Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiol 23:865–877

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the staff at McDowell Mountain Regional Park for their support and assistance with site access. We thank C. Clarkson and A. Cadmus for their assistance with field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather Kropp.

Additional information

Communicated by Susanne Schwinning.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kropp, H., Ogle, K. Seasonal stomatal behavior of a common desert shrub and the influence of plant neighbors. Oecologia 177, 345–355 (2015). https://doi.org/10.1007/s00442-014-3187-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-3187-0

Keywords

Navigation