Skip to main content
Log in

Fluxes of terrestrial and aquatic carbon by emergent mosquitoes: a test of controls and implications for cross-ecosystem linkages

  • Community ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Adult aquatic insects are a common resource for many terrestrial predators, often considered to subsidize terrestrial food webs. However, larval aquatic insects themselves consume both aquatic primary producers and allochthonous terrestrial detritus, suggesting that adults could provide aquatic subsidy and/or recycled terrestrial energy to terrestrial consumers. Understanding the source of carbon (aquatic vs. terrestrial) driving aquatic insect emergence is important for predicting magnitude of emergence and effects on recipient food web dynamics; yet direct experimental tests of factors determining source are lacking. Here, we use Culex mosquitoes in experimental pools as an exemplar to test how variation in general factors common to aquatic systems (terrestrial plant inputs and light) may alter the source and amount of energy exported to terrestrial ecosystems in adult aquatic insects that rely on terrestrial resources as larvae. We found strong sequential effects of terrestrial plant inputs and light on aquatic insect oviposition, diet, and emergence of Culex mosquitoes. Ovipositing mosquitoes laid ~3 times more egg masses in high terrestrial input pools under low light conditions. This behavior increased adult emergence from pools under low light conditions; however, high input pools (which had the highest mosquito densities) showed low emergence rates due to density-dependent mortality. Mosquito diets consisted mainly of terrestrial resources (~70–90 %). As a result, the amount of aquatic carbon exported from pools by mosquitoes during the experiment was ~18 times higher from low versus high light pools, while exports of terrestrial carbon peaked from pools receiving intermediate levels of inputs (3–6 times higher) and low light (~6 times higher). Our results suggest that understanding the interplay among terrestrial plant inputs, light availability and biotic responses of aquatic insects may be key in predicting source and magnitude of emergence, and thus the strength and effects of aquatic–terrestrial linkages in freshwater systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anthony LP, Kunz TH (1977) Feeding strategies of the little brown bat, Myotis lucifugus, in southern New Hampshire. Ecology 58:775–786

    Article  Google Scholar 

  • Benjamin JR, Fausch KD, Baxter CV (2011) Species replacement by a nonnative salmonid alters ecosystem function by reducing prey subsidies that support riparian spiders. Oecologia 167:503–512

    Article  PubMed  Google Scholar 

  • Bentley MD, Day JF (1989) Chemical ecology and behavioral aspects of mosquito oviposition. Annu Rev Entomol 34:401–421

    Article  PubMed  CAS  Google Scholar 

  • Binckley CA, Resetarits WJ Jr (2007) Effects of forest canopy on habitat selection in treefrogs and aquatic insects: implications for communities and metacommunities. Oecologia 153:951–958

    Article  PubMed  Google Scholar 

  • Binckley CA, Resetarits WJ Jr (2009) Spatial and temporal dynamics of habitat selection across canopy gradients generates patterns of species richness and composition in aquatic beetles. Ecol Entomol 34:457–465

    Article  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    Article  PubMed  Google Scholar 

  • Cummins KW (1973) Trophic relations of aquatic insects. Annu Rev Entomol 18:183–206

    Article  Google Scholar 

  • Cummins KW, Wilzbach MA, Gates DM, Perry JB, Taliaferro WB (1989) Shredders and riparian vegetation. Bioscience 39:24–30

    Article  Google Scholar 

  • Dabrowska-Prot E, Luczak J, Tarwid K (1968) The predation of spiders on forest mosquitoes in field experiments. J Med Entomol 5:252–256

    PubMed  CAS  Google Scholar 

  • DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506

    Article  CAS  Google Scholar 

  • Ellis AM (2008) Linking movement and oviposition behaviour to spatial population distribution in the tree hole mosquito Ochlerotatus triseriatus. J Anim Ecol 77:156–166

    Article  PubMed  Google Scholar 

  • Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley S, Schulz KL, Siemann EH, Sterner RW (2000) Nutritional constraints in terrestrial and freshwater food webs. Nature 408:578–580

    Google Scholar 

  • Fish D, Carpenter SR (1982) Leaf litter and larval mosquito dynamics in tree-hole ecosystems. Ecology 63:283–288

    Article  Google Scholar 

  • Gratton C, Vander Zanden MJ (2009) Flux of aquatic insect productivity to land: comparison of lentic and lotic ecosystems. Ecology 90:2689–2699

    Article  PubMed  Google Scholar 

  • Gratton C, Donaldson J, Vander Zanden MJ (2008) Ecosystem linkages between lakes and the surrounding terrestrial landscape in northeast Iceland. Ecosystems 11:764–774

    Article  Google Scholar 

  • Heard S (1994) Imperfect oviposition decisions by the pitcher plant mosquito (Wyeomyia smithii). Ecol Entomol 8:493–502

    Google Scholar 

  • Huxel GR, McCann K (1998) Food web stability: the influence of trophic flows across habitats. Am Nat 152:460–469

    Article  PubMed  CAS  Google Scholar 

  • Huxel GR, McCann K, Polis GA (2002) Effects of partitioning allochthonous and autochthonous resources on food web stability. Ecol Res 17:419–432

    Article  Google Scholar 

  • Iwata T (2007) Linking stream habitats and spider distribution: spatial variations in trophic transfer across a forest-stream boundary. Ecol Res 22:619–628

    Article  Google Scholar 

  • Karlsson J, Bystrom P, Ask J, Ask P, Persson L, Jansson M (2009) Light limitation of nutrient-pool lake ecosystems. Nature 460:506–509

    Article  PubMed  CAS  Google Scholar 

  • Kato C, Iwata T, Nakano S, Kishi D (2003) Dynamics of aquatic insect flux affects distribution of riparian web-building spiders. Oikos 103:113–120

    Article  Google Scholar 

  • Kaufman MG, Pelz-Stelinski KS, Yee DA, Juliano SA, Ostrom PH, Walker ED (2010) Stable isotope analysis reveals detrital resource base sources of tree hole mosquito, Aedes triseriatus. Ecol Entomol 35:586–593

    Article  PubMed  Google Scholar 

  • Kiflawi M, Blaustein L, Mangel M (2003a) Predation-dependent oviposition habitat selection by the mosquito Culiseta longiareolata: a test of competing hypotheses. Ecol Lett 6:35–40

    Article  Google Scholar 

  • Kiflawi M, Blaustein L, Mangel M (2003b) Oviposition habitat selection by the mosquito Culiseta longiareolata in response to risk of predation and conspecific larval density. Ecol Entomol 28:168–173

    Article  Google Scholar 

  • Kitching RL (1971) An ecological study of water-filled tree-holes and their position in the woodland ecosystem. J Anim Ecol 40:281–302

    Article  Google Scholar 

  • Kraus JM (2006) Resource subsidies to arthropod food webs at a pond-forest boundary. PhD dissertation, University of Virginia, Charlottesville

  • Kraus JM, Vonesh JR (2010) Feedbacks between community assembly and habitat selection shape variation in local colonization. J Anim Ecol 79:795–802

    PubMed  Google Scholar 

  • Kraus JM, Pletcher LT, Vonesh JR (2011) Variation in active and passive resource inputs to experimental pools: mechanisms and possible consequences for food webs. Freshw Biol 56:491–502

    Article  Google Scholar 

  • Logan JM, Jardine TD, Miller TJ, Bunn SE, Cunjak RA, Lutcavage ME (2008) Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. J Anim Ecol 77:838–846

    Article  PubMed  Google Scholar 

  • Lovett GM, Canham CD, Arthur MA, et al (2006) Forest ecosystem responses to exotic pests and pathogens in eastern North America. BioScience 56:395–405

    Google Scholar 

  • Lundkvist E, Landin J, Jackson M, Svensson C (2003) Diving beetles (Dytiscidae) as predators of mosquito larvae (Culicidae) in field experiments and in laboratory tests of prey preference. Bull Entomol Res 93:219–226

    Article  PubMed  CAS  Google Scholar 

  • Marczak LB, Richardson JS (2007) Spiders and subsidies: results from the riparian zone of a coastal temperate rainforest. J Anim Ecol 76:687–694

    Article  PubMed  Google Scholar 

  • Marczak LB, Thompson RM, Richardson JS (2007) Meta-analysis: trophic level, habitat, and productivity shape the food web effects of resource subsidies. Ecology 88:140–148

    Article  PubMed  Google Scholar 

  • McCutchan JH Jr, Lewis WM Jr, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–390

    Article  CAS  Google Scholar 

  • Merritt RW, Dadd RH, Walker ED (1992) Feeding behavior, natural food, and nutritional relationships of larval mosquitoes. Annu Rev Entomol 37:349–376

    Article  PubMed  CAS  Google Scholar 

  • Mihuc T, Toetz D (1994) Determination of diets of alpine aquatic insects using stable isotopes and gut analysis. Am Midl Nat 131:146–155

    Article  Google Scholar 

  • Minshall GW (1978) Autotrophy in stream ecosystems. Bioscience 28:767–771

    Article  Google Scholar 

  • Nakano S, Murakami M (2001) Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proc Natl Acad Sci USA 98:166–170

    Google Scholar 

  • Ngai JT, Srivastava DS (2006) Predators accelerate nutrient cycling in a bromeliad ecosystem. Science 314:963

    Article  PubMed  CAS  Google Scholar 

  • Pace ML, Cole JJ (2002) Synchronous variation of dissolved organic carbon and color in lakes. Limnol Oceanogr 47:333–342

    Article  CAS  Google Scholar 

  • Paetzold A, Tockner K (2005) Effects of riparian arthropod predation on the biomass and abundance of aquatic insect emergence. J North Am Benthol Soc 24:395–402

    Article  Google Scholar 

  • Parker GA, Smith JM (1990) Optimality theory in evolutionary biology. Nature 348:27

    Article  Google Scholar 

  • Phillips DL, Gregg JW (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 127:171–179

    Article  Google Scholar 

  • Polis GA, Hurd SD (1995) Extraordinarily high spider densities on islands: flow of energy from the marine to terrestrial food webs and the absence of predation. Proc Natl Acad Sci USA 92:4382–4386

    Google Scholar 

  • Polis GA, Hurd SD (1996) Allochthonous input across habitats, subsidized consumers, and apparent trophic cascades: examples from the ocean–land interface. In: Polis GA, Winemiller KO (eds) Food webs: integration of patterns and dynamics. Chapman and Hall, New York, pp 275–285

    Google Scholar 

  • Polis GA, Anderson WB, Holt RD (1997) Toward and integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316

    Article  Google Scholar 

  • Power M, Guiguer KRRA, Barton DR (2003) Effects of temperature on isotopic enrichment in Daphnia magna: implications for aquatic food-web studies. Rapid Commun Mass Spectrom 17:1619–1625

    Article  PubMed  CAS  Google Scholar 

  • Power ME, Rainey WE, Parker MS, Sabo JL, Smyth A, Khandwala S, Finlay JC, McNeely FC, Marsee K, Anderson C (2004) River-to-watershed subsidies in an old-growth conifer forest. In: Power ME, Huxel GR, Polis GE (eds) Food webs at the landscape level. University of Chicago Press, Chicago, pp 217–240

    Google Scholar 

  • Rauscher MD (1979) Larval habitat suitability and oviposition preference in three related butterflies. Ecology 60:503–511

    Article  Google Scholar 

  • Reiskind MH, Wilson ML (2004) Culex restuans (Diptera: Culicidae) oviposition behavior determined by larval habitat quality and quantity in southeastern Michigan. J Med Entomol 41:179–186

    Article  PubMed  Google Scholar 

  • Resetarits WJ, Rieger JF, Binckley CA (2004) Threat of predation negates density effects in larval gray treefrogs. Oecologia 138:532–538

    Article  PubMed  Google Scholar 

  • Richards C, Minshall GW (1988) The influence of periphyton abundance on Baetis bicaudatus distribution and colonization in a small stream. J North Am Benthol Soc 7:77–86

    Article  Google Scholar 

  • Rieger JF, Binckley CA, Resetarits WJ Jr (2004) Larval performance and oviposition site preference along a predation gradient. Ecology 85:2094–2099

    Article  Google Scholar 

  • Rounick JS, Winterbourn MJ, Lyon GL (1982) Differential utilization of allochthonous and autochthonous inputs by aquatic invertebrates in some New Zealand streams: a stable carbon isotope study. Oikos 39:191–198

    Article  CAS  Google Scholar 

  • Rubbo MJ, Cole JJ, Kiesecker JM (2006) Terrestrial subsidies of organic carbon support net ecosystem production in temporary forest ponds: evidence from an ecosystem experiment. Ecosystems 9:1170–1176

    Article  CAS  Google Scholar 

  • Sabo JL, Power ME (2002) Numerical response of lizards to aquatic insects and short-term consequences for terrestrial prey. Ecology 83:3023–3036

    Article  Google Scholar 

  • Schlaepfer MA, Runge MC, Sherman PW (2002) Ecological and evolutionary traps. Trends Ecol Evol 17:474–480

    Article  Google Scholar 

  • Schreiber S, Rudolf VHW (2008) Crossing habitat boundaries: coupling dynamics of ecosystems through complex life cycles. Ecol Lett 11:576–587

    Article  PubMed  Google Scholar 

  • Skelly ADK, Freidenburg LK, Kiesecker JM (2002) Forest canopy and the performance of larval amphibians. Ecology 83:983–992

    Article  Google Scholar 

  • Smyntek PM, Teece MA, Schulz KL, Thackeray SJ (2007) A standard protocol for stable isotope analysis of zooplankton in aquatic food web research using mass balance correction models. Limnol Oceanogr 52:2135–2146

    Article  CAS  Google Scholar 

  • Srivastava DS, Kolasa J, Bengtsson J, Gonzalez A, Lawler SP, Miller TE, Munguia P, Romanuk T, Schneider DC, Trzcinski MK (2004) Are natural microcosms useful model systems for ecology? Trends Ecol Evol 19:379–384

    Article  PubMed  Google Scholar 

  • Takimoto G, Iwata T, Murakami M (2002) Seasonal subsidy stabilizes food web dynamics: balance in a heterogeneous landscape. Ecol Res 17:433–439

    Article  Google Scholar 

  • Thompson JN (1988) Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomol Exp Appl 47:3–14

    Article  Google Scholar 

  • Tiegs SD, Peter FD, Robinson CT, Uehlinger U, Gessner MO (2008) Leaf decomposition and invertebrate colonization response to manipulated litter quantity in streams. J North Am Benthol Soc 27:321–331

    Article  Google Scholar 

  • Vander Zanden MJ, Rasmussen JB (2001) Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnol Oceanogr 46:2061–2066

    Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137

    Article  Google Scholar 

  • Vonesh JR, Blaustein L (2010) Predator-induced shifts in mosquito oviposition site selection: a meta-analysis and implications for vector control. Isr J Ecol Evol 56:263–279

    Article  Google Scholar 

  • Walkinshaw LH (1935) Studies of the short-billed marsh wren Cistothorus stellaris in Michigan. Auk 52:362–369

    Article  Google Scholar 

  • Wallace JB, Merritt RW (1980) Filter-feeding ecology of aquatic insects. Annu Rev Entomol 25:103–132

    Article  Google Scholar 

  • Wallace JB, Eggert SL, Meyer JL, Webster JR (1997) Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277:102–104

    Article  CAS  Google Scholar 

  • Wilbur HM, Collins JP (1973) Ecological aspects of amphibian metamorphosis. Science 182:1305–1314

    Article  PubMed  CAS  Google Scholar 

  • Yee DA (2010) Behavior and aquatic plants as factors affecting predation by three species of larval predaceous diving beetles. Hydrobiologia 637:33–43

    Article  Google Scholar 

  • Yee DA, Kneitel JM, Juliano SA (2010) Environmental correlates of abundances of mosquito species and stages in discarded vehicle tires. J Med Entomol 47:53–62

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We appreciate the help of L. Smock, L. McCallister, G. O’Meara, J. Hite, C. Asquith, Z. Costa, P. Shirk, and S. Gifford with experimental planning, field work, and sample processing. Thanks to A. Wright, D. Walters, K. Caillouet, L. Bulluck, H. Houtz, R. Komosinski, J. Charbonnier, K. McCluney and several anonymous reviewers for comments. Drawings by E. Losinio and G. Kuznetsov at the VCU Design Center. Funding by VCU Inger and Walter Rice Center for Environmental Life Sciences, VCU Department of Biology and the National Science Foundation (DEB-0717200). VCU Rice Center Contribution number 023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna M. Kraus.

Additional information

Communicated by Robert Hall.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraus, J.M., Vonesh, J.R. Fluxes of terrestrial and aquatic carbon by emergent mosquitoes: a test of controls and implications for cross-ecosystem linkages. Oecologia 170, 1111–1122 (2012). https://doi.org/10.1007/s00442-012-2369-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-012-2369-x

Keywords

Navigation