Skip to main content

Advertisement

Log in

On P2X receptors in the brain: microvessels. Dedicated to the memory of the late Professor Geoffrey Burnstock (1929–2020)

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

This tribute article presents selected immunocytochemical and transmission electron microscope data on the location of ATP-gated P2X receptor in the rat brain, as studied in the 1990s in Prof G. Burnstock’s laboratory at University College London. There are examples of immuno-ultrastructural findings and introductory information about pre- and post-synaptic location of P2X receptors in the rat cerebellum and endocrine hypothalamus to support the concept of purinergic transmission in the central nervous system. Then findings of diverse immunoreactivity for P2X1, P2X2, P2X4, and P2X6 receptors associated with brain microvessels are shown, including vascular endothelium and pericytes as well as perivascular astrocytes and neuronal components. These findings imply the involvement of P2X receptors and hence purinergic signalling in the neurovascular unit, at least in microvessels in the rat cerebellum and hypothalamic paraventricular and supraoptic nuclei examined here. Various aspects of P2X receptors in brain microvessels are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215

    Article  CAS  PubMed  Google Scholar 

  • Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte-interactions. Circ Res 97:512–523

    Article  CAS  PubMed  Google Scholar 

  • Armulik A, Genove G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood–brain barrier. Nature 468:557–561

    Article  CAS  PubMed  Google Scholar 

  • Bezzi P, Domercq M, Vesce S, Volterra A (1999) Neuron-astrocyte cross-talk during synaptic transmission: physiological and neuropathological implications. Progr Brain Res 132:255–265

    Article  Google Scholar 

  • Blanco VM, Stern JE, Filosa J (2008) Tone-dependent vascular responses to astrocyte-derived signals. Am J Physiol Heart Circ Physiol 294:H2855–H2863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bobanovic LK, Royle SL, Murrell-Lagnado RD (2002) P2X receptor trafficking in neurons is subunit specific. J Neurosci 22:4814–4824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodin P, Burnstock G (1995) Synergistic effect of acute hypoxia on flow-induced release of ATP from cultured endothelial cells. Experientia 51:256–259

    Article  CAS  PubMed  Google Scholar 

  • Bodin P, Burnstock G (2001) Evidence that release of adenosine triphosphate from endothelial cells during increased shear stress is vesicular. J Cardiovasc Pharmacol 38:900–908

    Article  CAS  PubMed  Google Scholar 

  • Bodin P, Bailey DJ, Burnstock G (1991) Increased flow-induced ATP release from isolated vascular endothelial but not smooth muscle cells. Br J Pharmacol 103:1203–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (1990) Dual control of local blood flow by purines. Ann NY Acad Sci 603:31–44

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 67:659–797. https://doi.org/10.1152/physrev.00043.2006

    Article  CAS  Google Scholar 

  • Burnstock G (2010) Control of vascular tone by purines and pyrimidines. Br J Pharmacol 161:527–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnstock G (2017a) Purinergic signaling in the cardiovascular system. Circ Res 120:207–228

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (2017b) Purinergic signalling and neurological diseases: an update. CNS Neurol Disord Drug Targets 16:257–265

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (2017c) Purinergic signalling: therapeutic developments Front Pharmacol 8:661. https://doi.org/10.3389/fphar.2017.00661

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (2020) Introduction to purinergic signalling in the brain. In: Barańska J (ed) Glioma signaling. Advances in experimental medicine and biology, vol 1202. Springer, Cham, pp 1–12 https://doi.org/10.1007/978-3-030-30651-9_1

  • Burnstock G, Knight G (2018) The potential of P2X7 receptors as a therapeutic target, including inflammation and tumour progression. Purinergic Signal 14:1–18

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G, Ralevic V (2014) Purinergic signaling and blood vessels in health and disease. Pharmacol Rev 66:102–192

    Article  PubMed  Google Scholar 

  • Burnstock G, Krugel U, Abbracchio MP, Illes P (2011) Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 95:229–274

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G, Verkhratsky A (2010) Vas deferens - a model used to establish sympathetic cotransmission. Trends Pharmacol Sci 31:131–139

    Article  CAS  PubMed  Google Scholar 

  • Cai C, Fordsmann JC, Jensen SH, Gesslein B, Lønstrup M, Hald BO, Zambach SA, Brodin B, Lauritzen MJ (2018) Stimulation-induced increases in cerebral blood flow and local capillary vasoconstriction depend on conducted vascular responses. PNAS 115:E5796–E5804

    Article  CAS  PubMed  Google Scholar 

  • Cantelmo AR, Conradi L-C, Brajic A, Goveia J, Kalucka J, Pircher A, Chaturvedi P, Hol J, Thienpont B, Teuwen L-A, Schoors S, Boeckx B, Vriens J, Kuchnio A, Veys K, Cruys B, Finotto L, Treps L, Stav-Noraas TE, Bifari F, Stapor P, Decimo I, Kampen K, De Bock K, Haraldsen G, Schoonjans L, Rabelink T, Eelen G, Ghesquière B, Rehman J, Lambrechts D, Malik AB, Dewerchin M, Carmeliet P (2016) Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy. Cancer Cell 30:968–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan CM, Unwin RJ, Oglesby IB, Ford APDW, Townsend-Nicholson A, Burnstock G (1998) Localization of the P2X1purinoceptors by autoradiography and immunochistochemistry in rat kid-neys. Am J Physiol 274:F799–F804

    CAS  PubMed  Google Scholar 

  • Chen ZP, Levy A, Lightman SL (1994) Activation of specific ATP receptors induces a rapid increase in intracellular calcium ions in rat hypothalamic neurons. Brain Res 641:249–256

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Korte N, Nortley R, Sethi H, Tang Y, Attwell D (2018) Targeting pericytes for therapeutic approaches to neurological disorders. Acta Neuropathol 136:507–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coco S, Calegari F, Pravettoni E, Pozzi D, Taverna E, Rosa P, Matteoli M, Verderio C (2003) Storage and release of ATP from astrocytes in culture. Biol Chem 278:1354–1362. https://doi.org/10.1074/jbc.m209454200

    Article  CAS  Google Scholar 

  • Collo G, North RA, Kawashima E, Merlo-Pich E, Neidhart S, Surprenant A, Buell G (1996) Cloning of P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels. J Neurosci 16:2495–2507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunha RA, Ribeiro JA (2000) ATP as a presynaptic modulator. Life Sci 68:119–137

    Article  CAS  PubMed  Google Scholar 

  • Dalkara T, Alakron-Martinez L (2015) Cerebral microvascular pericytes and neurogliovascular gnaling in health and disease. Brain Res 1623:3–17

    Article  CAS  PubMed  Google Scholar 

  • Dietrich HH, Horiuchi T, Xiang C, Hongo K, Falck JR, Dacey RG Jr (2009) Mechanism of ATP-induced local and conducted vasomotor responses in isolated rat cerebral penetrating arterioles. J Vasc Res 46:253–264

    Article  CAS  PubMed  Google Scholar 

  • Domer FR, Alexander B, Milner P, Bodin P, Burnstock G (1993) Effect of changes in rate of vascular perfusion on release of substances into the effluent from the brain of the rabbit. Brain Res 630:88–94

    Article  CAS  PubMed  Google Scholar 

  • Dore-Duffy P, Cleary K (2011) Morphology and properties of pericytes. Methods Mol Biol 686:49–68

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Klett F, Brandt L, Fernández-Zapata C, Abuelnor B, Middeldorp J, Sluijs JA, Curtis M, Faull R, Harris LW, Bahn S, Hol EM, Prille J (2020) Denser brain capillary network with preserved pericytes in Alzheimer’s disease. Brain Pathol 2020:1–1. https://doi.org/10.1111/bpa.12897

    Article  CAS  Google Scholar 

  • Glass R, Burnstock G (2001) Immunohistochemical identification of cells expressing ATP-gated cation channels (P2X receptors) in the adult rat thyroid. J Anat 198:569–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glass R, Townsend-Nicholson A, Burnstock G (2000) P2 receptors in the thymus: expression of P2X and P2Y receptors in adult rats, an immunohistochemical and in situ hybridisation study. Cell Tissue Res 300:295–306

    Article  CAS  PubMed  Google Scholar 

  • Glass R, Loesch A, Bodin† P, Burnstock G, (2002) P2X4 and P2X6 receptors associate with VE-cadherin in human endothelial cells. CMLS, Cell Mol Life Sci 59:870–881

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Sun J, Xu X, Bunstock G, He C, Xiang Z (2009) P2X receptors are differentially expressed on vasopressin and oxytocin-containing neurons in the supraoptic and paraventricular nuclei of rat hypothalamus. Histochem Cell Biol 131:29–41

    Article  CAS  PubMed  Google Scholar 

  • Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O’Farrell FM, Buchan AM, Lauritzen M, Attwell D (2014) Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508:55–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen MA, Dutton JL, Barden BVJ, JA, Bennett MR, (1999) P, (purinergic) receptor distributions in rat blood vessels. J Anat Nerv Syst 75:147–155. https://doi.org/10.1016/S0165-1838(98)00189-1

    Article  CAS  Google Scholar 

  • Hayden MR (2019) Hypothesis: astrocyte foot processes detachment from the neurovascular unit in female diabetic mice may impair modulation of information processing-six degrees of separation. Brain Sci 9:83. https://doi.org/10.3390/brainsci9040083

    Article  CAS  PubMed Central  Google Scholar 

  • Iadecola C, Beitz AJ, Renno W, Xu X, Mayer B, Zhang F (1993) Nitric oxide synthase-containing neural processes on large cerebral arteries and cerebral microvessels. Brain Res 606:148–155

    Article  CAS  PubMed  Google Scholar 

  • Jensen LJ, Holstein-Rathlou NH (2013) The vascular conducted response in cerebral blood flow regulation. J Cereb Blood Flow Metab 33:649–656

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapoor JR, Sladek CD (2000) Purinergic and adrenergic agonists synergize in stimulating vasopressin and oxytocin release. J Neurosci 20:8868–8875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawamura H, Sugiyama T, Wu DM, Kobayashi M, Yamanishi S, Katsumura K, Puro DG (2003) ATP: a vasoactive signal in the pericyte-containing microvasculature of the rat retina. J Physiol 551(Pt 3):787–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirabali T, Rust R, Rigorri S, Siccoli A, Nitsch RM, Kulic L (2020) Distinct changes in all major components of the neurovascular unit across different neuropathological stages of Alzheimer’s disease. Brain Pathol. https://doi.org/10.1111/bpa.12895

    Article  PubMed  Google Scholar 

  • Kovac A, Erickson MA, Banks WA (2011) Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide. J Neuroinflammation 8:139. https://doi.org/10.1186/1742-2094-8-139

    Article  CAS  PubMed  Google Scholar 

  • Lê KT, Villeneuve P, Ramjaun AR, Mcpherson PS, Beaudet A, Séguéla P (1998) Sensory presynaptic and widespread somatodendritic immunolocalization of central ionotropic P2X ATP receptors. Neuroscience 83:177–190

    Article  PubMed  Google Scholar 

  • Lemos JR, Custer EE, Ortiz-Miranda S (2018) Purinergic receptor types in the hypothalamic-neurohypophysial system. J Neuroendorrinol 30:1–8

    Google Scholar 

  • Llewenllyn-Smith IJ, Burnstock G (1998) Ultrastructural localization of P2X3 receptors in rat sensory neurons. NeuroReport 9:2545–2550

    Article  Google Scholar 

  • Loesch A (2002) Perivascular nerves and vascular endothelium: recent advances. Histol Histopathol 17:591–597

    CAS  PubMed  Google Scholar 

  • Loesch A, Burnstock G (1996) Ultrastructural study of perivascular nerve fibres and endothelial cells of the rat basilar artery immunolabelled with monoclonal antibodies to neuronal and endothelial nitric oxide synthase. J Neurocytol 25:525–534

    Article  CAS  PubMed  Google Scholar 

  • Loesch A, Burnstock G (1998a) Electron-immunocytochemical localization of P2X1 receptors in the rat cerebellum. Cell Tissue Res 294:253–260

    Article  CAS  PubMed  Google Scholar 

  • Loesch A, Burnstock G (1998b) Perivascular nerve fibres and endothelial cells of the rat basilar artery: immuno-gold labelling of antigenic sites for type I and type III nitric oxide synthase. J Neurocytol 27:197–204

    Article  CAS  PubMed  Google Scholar 

  • Loesch A, Burnstock G (2000) Ultrastructural localisation of ATP-gated P2X2 receptor immunoreactivity in vascular endothelial cells in rat brain. Endothelium 7:93–98

    Article  CAS  PubMed  Google Scholar 

  • Loesch A, Burnstock G (2001) Immunoreactivity to P2X6 receptors in the rat hypothalamo-neurohypophysial system: An ultrastructural study with extravidin and colloidal gold-silver labelling. Neuroscience 106:621–631

    Article  CAS  PubMed  Google Scholar 

  • Loesch A, Miah S, Burnstock G (1999) Ultrastructural localisation of ATP-gated P2X2 receptor immunoreactivity in the rat hypothalamo-neurohypophysial system. J Neurocytol 28:495–504

    Article  CAS  PubMed  Google Scholar 

  • Milner P, Bodin P, Loesch A, Burnstock G (1990) Rapid release of endothelin and ATP from isolated aortic endothelial cells exposed to increased flow. Biochem Biophys Res Commun 170:649–656

    Article  CAS  PubMed  Google Scholar 

  • Milner P, Kirkpatrick KA, Ralevic V, Toothill V, Pearson JD, Burnstock G (1990) Endothelial cells cultured from human umbilical vein release ATP, substance P and acetylcholine in response to increased flow. Proc Roy Soc B 241:245–248

    Article  CAS  Google Scholar 

  • Milner P, Bodin P, Loesch A, Burnstock G (1992) Increased shear stress leads to differential release of endothelin and ATP from isolated endothelial cells from 4- and 12-month-old male rabbit aorta. J Vasc Res 29:420–425

    Article  CAS  PubMed  Google Scholar 

  • Milner P, Bodin P, Loesch A, Burnstock G (1995) Interactions between sensory perivascular nerves and the endothelium in brain microvessels. Int J Microcirc 15:1–9

    Article  CAS  Google Scholar 

  • Mishra A, Reynolds JP, Chen Y, Gourine AV, Rusakov DA, Attwell D (2016) Astrocytes mediate neurovascular signaling to capillary pericytes but not to arteriols. Nat Neurosci 19:1619–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori M, Tsushima H, Matsuda T (1992) Antidiuretic effects of purinoceptor agonists injected into the hypothalamic paraventricular nucleus of water-loaded, ethanol-anesthetized rats. Neuropharmacol 31:585–592

    Article  CAS  Google Scholar 

  • Mulligan SJ, MacVicar BA (2004) Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431:195–199

    Article  CAS  PubMed  Google Scholar 

  • Murphy S, Simmons ML, Agullo L, Garcia A, Feinstein DL, Galea E, Reis DJ, Minc-Golomb D, Schwartz JP (1993) Synthesis of nitric oxide in CNS glial cells. Trends Neurosci 16:323–328

    Article  CAS  PubMed  Google Scholar 

  • Netto JP, Iliff J, Stanimirovic D, Krohn KA, Hamilton B, Varallyay C, Gahramanov S, Daldrup-Link H, d’Esterre C, Zlokovic B, Sair H, Lee Y, Taheri S, Jain R, Panigrahy A, Reich DS, Drewes LR, Castillo M, Neuwelt EA (2018) Neurovascular unit: basic and clinical imaging with emphasis on advantages of ferumoxytol. Neurosurgery 82:770–780

    Article  PubMed  Google Scholar 

  • Nozaki K, Moskowitz MA, Maynard KI, Koketsu N, Dawson TM, Bredt DS, Snyder SH (1993) Possible origins and distribution of immunoreactive nitric oxide synthase-containing nerve fibers in cerebral arteries. J Cereb Blood Flow Metab 13:70–79

    Article  CAS  PubMed  Google Scholar 

  • Nwadozi E, Rudnicki M, Haas TL (2020) Metabolic coordination of pericyte phenotypes: therapeutic implications. Front Cell Dev Biol 8:77. https://doi.org/10.3389/2Ffcell.2020.00077

  • Oglesby IB, Lachnit WG, Burnstock G, Ford APDW (1999) Subunit specificity of polyclonal antisera to the carboxy terminal regions of the P2X receptors, P2X1 through P2X7. Drug Dev Res 47:189–195

    Article  CAS  Google Scholar 

  • Ozerdem U, Grako KA, Danhil-Huppe K, Monsov E, Stallcup WB (2001) NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn 222:218–227

    Article  CAS  PubMed  Google Scholar 

  • Peppiatt CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443:700–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poelchen W, Sieler D, Wirkner K, Illes P (2001) Co-transmitter function of ATP in central catecholaminergic neurons of the rat. Neuroscience 102:593–602

    Article  CAS  PubMed  Google Scholar 

  • Porter JT, McCarthy KD (1996) Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J Neurosci 16:5073–5081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    CAS  PubMed  Google Scholar 

  • Ralevic V, Milner P, Kirkpatrick KA, Burnstock G (1992) Flow-induced release of adenosine 5’-triphosphate from endothelial cells of the rat mesenteric arterial bed. Experientia 48:31–34

    Article  CAS  PubMed  Google Scholar 

  • Renaud LP, Bourquet CW (1991) Neurophysiology and neuropharmacology of hypothalamic magnocellular neurons secreting vasopressin and oxytocin. Progr Neurobiol 36:131–169

    Article  CAS  Google Scholar 

  • Robinson LE, Murrell-Lagnado R (2013) The trafficking and targeting of P2X receptors. Front. Cell. Neurosci., 22 November 2013 https://doi.org/10.3389/fncel.2013.00233

  • Sperlágh B, Sershen H, Lajtha A, Vizi ES (1997) Co-release of endogenous ATP and [3H]noradrenaline from rat hypothalamic slices: origin and modulation by α2-adrenoceptors. Neuroscience 82:511–520

    Article  Google Scholar 

  • Sperlágh B, Mergl Z, Juranyi Z, Vizi ES, Makara GB (1999) Local regulation of vasopressin and oxytocin secretion by extracellular ATP in the isolated posterior lobe of the rat hypophysis. J Endocrinol 160:343–350

    Article  PubMed  Google Scholar 

  • Vanhoutte PM (2000) Say NO to ET. J Auton Nerv Syst 81:271–277

    Article  CAS  PubMed  Google Scholar 

  • Verderio C, Matteoli M (2001) ATP Mediates calcium signaling between astrocytes and microglial cells: modulation by IFN-gamma. J Immunol 166:6383–6391

    Article  CAS  PubMed  Google Scholar 

  • Verkhratsky A, Zimmermann H, Abbracchio MP, Illes P, Di Virgilio F (2020) Invited Obituary. In memoriam Geoffrey Burnstock: Creator of purinergic signaling. FUNCTION, 2020, 1(1): zqaa006. https://doi.org/10.1093/function/zqaa006

  • Xiang Z, Bo ZX, Burnstock G (1998) Localization of ATP-gated P2X receptor immunoreactivity in rat sensory and sympathetic ganglia. Neurosci Lett 256:105–108

    Article  CAS  PubMed  Google Scholar 

  • Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nature Neurosci 6:43–50

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank Ms Tania Raquel Assuncao Martins for her editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Loesch.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Ethical approval

The studies described were carried following ethical approval. All rats were treated in accordance with the UK Animals (Scientific Procedures) Act 1986.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loesch, A. On P2X receptors in the brain: microvessels. Dedicated to the memory of the late Professor Geoffrey Burnstock (1929–2020). Cell Tissue Res 384, 577–588 (2021). https://doi.org/10.1007/s00441-021-03411-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-021-03411-0

Keywords

Navigation