Skip to main content
Log in

Combining the lack of chromogranins with chronic L-DOPA treatment affects motor activity in mice

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

We have tested whether the lack of chromogranins (Cgs) A and B could provoke CNS disorders when combined with an excess of dopamine. We chronically treated (over 6 months) mice lacking both chromogranins A and B (Cgs-KO) with a low oral dosage of L-DOPA/benserazide (10/2.5 mg/kg). Motor performance in the rota-rod test, open field activity, and metabolic cages indicated a progressive impairment in motor coordination in these mice, and an increase in rearing behavior, which was accompanied by an increase in DA within the substantia nigra. We conclude that mild chronic L-DOPA treatment does not produce nigro-striatal toxicity that could be associated with parkinsonism, neither in control nor Cgs-KO mice. Rather, Cgs-KO mice exhibit behaviors compatible with an amphetamine-like effect, probably caused by the excess of catecholamines in the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bailey RC, Jackson DM, Bracs PU (1979) Long-term L-dopa pretreatment of mice: central receptor subsensitivity or supersensitivity? Psychopharmacology 66:55–61

    Article  CAS  Google Scholar 

  • Bandyopadhyay GK, Mahata SK (2017) Chromogranin a regulation of obesity and peripheral insulin sensitivity. Front Endocrinol (Lausanne) 8:20

    Article  Google Scholar 

  • Bartolomucci A, Possenti R, Mahata SK, Fischer-Colbrie R, Loh YP, Salton SR (2011) The extended granin family: structure, function, and biomedical implications. Endocr Rev 32:755–797

    Article  CAS  Google Scholar 

  • Blaschko H, Comline RS, Schneider FH, Silver M, Smith AD (1967) Secretion of a chromaffin granule protein, chromogranin, from the adrenal gland after splanchnic stimulation. Nature 215:58–59

    Article  CAS  Google Scholar 

  • Blesa J, Pifl C, Sanchez-Gonzalez MA, Juri C, Garcia-Cabezas MA, Adanez R, Iglesias E, Collantes M, Penuelas I, Sanchez-Hernandez JJ, Rodriguez-Oroz MC, Avendano C, Hornykiewicz O, Cavada C, Obeso JA (2012) The nigrostriatal system in the presymptomatic and symptomatic stages in the MPTP monkey model: a PET, histological and biochemical study. Neurobiol Dis 48:79–91

    Article  CAS  Google Scholar 

  • Borges R, Sala F, Garcia AG (1986) Continuous monitoring of catecholamine release from perfused cat adrenals. J Neurosci Methods 16:289–300

    Article  CAS  Google Scholar 

  • Borges R, Diaz-Vera J, Dominguez N, Arnau MR, Machado JD (2010) Chromogranins as regulators of exocytosis. J Neurochem 114:335–343

    Article  CAS  Google Scholar 

  • Brooks DJ (2010) Imaging approaches to Parkinson disease. J Nucl Med 51:596–609

    Article  CAS  Google Scholar 

  • Burke WJ, Kumar VB, Pandey N, Panneton WM, Gan Q, Franko MW, O'Dell M, Li SW, Pan Y, Chung HD, Galvin JE (2008) Aggregation of alpha-synuclein by DOPAL, the monoamine oxidase metabolite of dopamine. Acta Neuropathol 115:193–203

    Article  CAS  Google Scholar 

  • Cannon JR, Tapias V, Na HM, Honick AS, Drolet RE, Greenamyre JT (2009) A highly reproducible rotenone model of Parkinson’s disease. Neurobiol Dis 34:279–290

    Article  CAS  Google Scholar 

  • Castaneyra-Ruiz L, Gonzalez-Marrero I, Hernandez-Abad LG, Carmona-Calero EM, Meyer G, Castaneyra-Perdomo A (2016) A distal to proximal gradient of human choroid plexus development, with antagonistic expression of Glut1 and AQP1 in mature cells vs. calbindin and PCNA in proliferative cells. Front Neuroanat 10:87

    Article  Google Scholar 

  • Diaz-Vera J, Morales YG, Hernandez-Fernaud JR, Camacho M, Montesinos MS, Calegari F, Huttner WB, Borges R, Machado JD (2010) Chromogranin B gene ablation reduces the catecholamine cargo and decelerates exocytosis in chromaffin secretory vesicles. J Neurosci 30:950–957

    Article  CAS  Google Scholar 

  • Diaz-Vera J, Camacho M, Machado JD, Dominguez N, Montesinos MS, Hernandez-Fernaud JR, Lujan R, Borges R (2012) Chromogranins A and B are key proteins in amine accumulation, but the catecholamine secretory pathway is conserved without them. FASEB J 26:430–438

    Article  CAS  Google Scholar 

  • Dominguez N, Estevez-Herrera J, Borges R, Machado JD (2014) The interaction between chromogranin A and catecholamines governs exocytosis. FASEB J 28:4657–4667

    Article  CAS  Google Scholar 

  • Fornai F, Battaglia G, Gesi M, Giorgi FS, Orzi F, Nicoletti F, Ruggieri S (2000) Time-course and dose-response study on the effects of chronic L-DOPA administration on striatal dopamine levels and dopamine transporter following MPTP toxicity. Brain Res 887:110–117

    Article  CAS  Google Scholar 

  • Goldstein DS, Sullivan P, Holmes C, Miller GW, Alter S, Strong R, Mash DC, Kopin IJ, Sharabi Y (2013) Determinants of buildup of the toxic dopamine metabolite DOPAL in Parkinson’s disease. J Neurochem 126:591–603

    Article  CAS  Google Scholar 

  • Goldstein DS, Kopin IJ, Sharabi Y (2014) Catecholamine autotoxicity. Implications for pharmacology and therapeutics of Parkinson disease and related disorders. Pharmacol Ther

  • Helle KB, Metz-Boutigue MH, Cerra MC, Angelone T (2018) Chromogranins: from discovery to current times. Pflugers Arch 470:143–154

    Article  CAS  Google Scholar 

  • Jenner P, Olanow CW (1996) Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47:S161–S170

    Article  CAS  Google Scholar 

  • Kim T, Tao-Cheng JH, Eiden LE, Loh YP (2001) Chromogranin A, an "on/off" switch controlling dense-core secretory granule biogenesis. Cell 106:499–509

    Article  CAS  Google Scholar 

  • Lever C, Burton S, O'Keefe J (2006) Rearing on hind legs, environmental novelty, and the hippocampal formation. Rev Neurosci 17:111–133

    Article  Google Scholar 

  • Mahapatra NR, O'Connor DT, Vaingankar SM, Hikim AP, Mahata M, Ray S, Staite E, Wu H, Gu Y, Dalton N, Kennedy BP, Ziegler MG, Ross J, Mahata SK (2005) Hypertension from targeted ablation of chromogranin A can be rescued by the human ortholog. J Clin Invest 115:1942–1952

    Article  CAS  Google Scholar 

  • Mena MA, Davila V, Sulzer D (1997) Neurotrophic effects of L-DOPA in postnatal midbrain dopamine neuron/cortical astrocyte cocultures. J Neurochem 69:1398–1408

    Article  CAS  Google Scholar 

  • Montesinos MS, Machado JD, Camacho M, Diaz J, Morales YG, Alvarez de la Rosa D, Carmona E, Castaneyra A, Viveros OH, O'Connor DT, Mahata SK, Borges R (2008) The crucial role of chromogranins in storage and exocytosis revealed using chromaffin cells from chromogranin A null mouse. J Neurosci 28:3350–3358

    Article  CAS  Google Scholar 

  • Nikolaus S, Beu M, De Souza Silva AM, Huston JP, Hautzel H, Chao OY, Antke C, Muller HW (2014) Relationship between L-DOPA-induced reduction in motor and exploratory activity and degree of DAT binding in the rat. Front Behav Neurosci 8:431

    Article  Google Scholar 

  • Obermuller S, Calegari F, King A, Lindqvist A, Lundquist I, Salehi A, Francolini M, Rosa P, Rorsman P, Huttner WB, Barg S (2010) Defective secretion of islet hormones in chromogranin-B deficient mice. PLoS One 5:e8936

    Article  Google Scholar 

  • Pereda D, Pardo MR, Morales YG, Dominguez N, Arnau MR, Borges R (2015) Mice lacking chromogranins exhibit increased aggressive and depression-like behaviour. Behav Brain Res 278:98–106

    Article  CAS  Google Scholar 

  • Poewe WH, Lees AJ, Stern GM (1986) Low-dose L-dopa therapy in Parkinson’s disease: a 6-year follow-up study. Neurology 36:1528–1530

    Article  CAS  Google Scholar 

  • Spencer JP, Jenner A, Butler J, Aruoma OI, Dexter DT, Jenner P, Halliwell B (1996) Evaluation of the pro-oxidant and antioxidant actions of L-DOPA and dopamine in vitro: implications for Parkinson’s disease. Free Radic Res 24:95–105

    Article  CAS  Google Scholar 

  • Taupenot L, Harper KL, Mahapatra NR, Parmer RJ, Mahata SK, O'Connor DT (2002) Identification of a novel sorting determinant for the regulated pathway in the secretory protein chromogranin A. J Cell Sci 115:4827–4841

    Article  CAS  Google Scholar 

  • Taupenot L, Harper KL, O'Connor DT (2003) The chromogranin-secretogranin family. N Engl J Med 348:1134–1149

    Article  CAS  Google Scholar 

  • Taylor TN, Alter SP, Wang M, Goldstein DS, Miller GW (2014) Reduced vesicular storage of catecholamines causes progressive degeneration in the locus ceruleus. Neuropharmacology 76(Pt A):97–105

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Lidia Ruiz for her excellent work in processing the tissue for microscopy, and our discussions with Dr. Daniel Marcellino (Department of Integrative Medical Biology, Umeå, Sweden) were greatly appreciated.

Funding

This work was supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (BFU2017-82618-P). LCR received a PhD fellowship from Fundación CajaCanarias (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Borges.

Ethics declarations

Ethical approval

All procedures involving animals were performed in accordance with institutional (Universidad de La Laguna, CEIBA-2014-0125a) and national guidelines, and in compliance with the EU guidelines in directive EC/63/2010.

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

This is not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castañeyra-Ruiz, L., Castañeyra, A., González-Santana, A. et al. Combining the lack of chromogranins with chronic L-DOPA treatment affects motor activity in mice. Cell Tissue Res 380, 59–66 (2020). https://doi.org/10.1007/s00441-019-03159-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-019-03159-8

Keywords

Navigation