Skip to main content
Log in

Placental cell death patterns exhibit differences throughout gestation in two strains of laboratory mice

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Cell death is an essential physiological process required for the proper development and function of the human placenta. Although the mouse is a commonly used animal model for development studies, little is known about the extent and distribution of cell death in the mouse placenta throughout development and its physiological relevance. In the present study, we report the results of a systematic and quantitative assessment of cell death patterns in the placentae of two strains of laboratory mice commonly used for developmental studies—ICR and C57Bl/6. TUNEL staining revealed that ICR and C57Bl/6 placentae exhibited similar cell death patterns to those reported in human placentae during pregnancy, with comparatively infrequent death observed during early gestation, which increased and became more organized towards term. Interestingly, when comparing strain differences, increased cell death was observed in almost all regions of the inbred C57Bl/6 placentae compared to the outbred ICR strain. Finally, since Bcl-2 ovarian killer (Bok) has been reported to be a key player in human placental cell death, we examined its expression in murine placentae throughout gestation. Bok protein expression was observed in all placental regions and increased towards term in both strains. The results of this study indicate that although strain-specific differences in placental cell death exist, the overall rates and patterns of cell death during murine placentation parallel those previously described in humans. Thus, the murine placenta is a useful model to investigate molecular pathways involved in cell death signaling during human placentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ausman J, Abbade J, Ermini L, Farrell A, Tagliaferro A, Post M, Caniggia I (2018) Ceramide-induced BOK promotes mitochondrial fission in preeclampsia. Cell Death Dis 9:298

    PubMed  PubMed Central  Google Scholar 

  • Bailey LJ, Alahari S, Tagliaferro A, Post M, Caniggia I (2017) Augmented trophoblast cell death in preeclampsia can proceed via ceramide-mediated necroptosis. Cell Death Dis 8:1–14

    CAS  Google Scholar 

  • Boland B, Campbell V (2003) beta-Amyloid (1-40)-induced apoptosis of cultured cortical neurones involves calpain-mediated cleavage of poly-ADP-ribose polymerase. Neurobiol Aging 24:179–186

    CAS  PubMed  Google Scholar 

  • Bouillot S, Rampon C, Tillet E, Huber P (2006) Tracing the glycogen cells with protocadherin 12 during mouse placenta development. Placenta 27:882–888

    CAS  PubMed  Google Scholar 

  • Cali U, Cavkaytar S, Sirvan L, Danisman N (2013) Placental apoptosis in preeclampsia, intrauterine growth retardation, and HELLP syndrome: an immunohistochemical study with caspase-3 and bcl-2. Clin Exp Obstet Gynecol 40:45–48

    CAS  PubMed  Google Scholar 

  • Carpio MA, Michaud M, Zhou W, Fisher JK, Walensky LD, Katz SG (2015) BCL-2 family member BOK promotes apoptosis in response to endoplasmic reticulum stress. Proc Natl Acad Sci 112:7201–7206

    CAS  PubMed  Google Scholar 

  • Chwieralski CE, Welte T, Bühling F (2006) Cathepsin-regulated apoptosis. Apoptosis 11:143–149

    CAS  PubMed  Google Scholar 

  • Coan PM, Conroy N, Burton GJ, Ferguson-Smith AC (2006) Origin and characteristics of glycogen cells in the developing murine placenta. Dev Dyn 235:3280–3294

    CAS  PubMed  Google Scholar 

  • Cox B, Kotlyar M, Evangelou AI, Ignatchenko V, Ignatchenko A, Whiteley K, Jurisica I, Adamson SL, Rossant J, Kislinger T (2009) Comparative systems biology of human and mouse as a tool to guide the modeling of human placental pathology. Mol Syst Biol 5:1–15

    Google Scholar 

  • Crocker IP, Cooper S, Ong SC, Baker PN (2003) Differences in apoptotic susceptibility of cytotrophoblasts and syncytiotrophoblasts in normal pregnancy to those complicated with preeclampsia and intrauterine growth restriction. Am J Pathol 162:637–643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cross JC, Hemberger M, Lu Y, Nozaki T, Whiteley K, Masutani M, Adamson SL (2002) Trophoblast functions, angiogenesis and remodeling of the maternal vasculature in the placenta. Mol Cell Endocrinol 187:207–212

    CAS  PubMed  Google Scholar 

  • D’Orsi B, Engel T, Pfeiffer S, Nandi S, Kaufmann T, Henshall DC, Prehn JHM (2016) Bok is not pro-apoptotic but suppresses poly ADP-ribose polymerase-dependent cell death pathways and protects against excitotoxic and seizure-induced neuronal injury. J Neurosci 36:4564–4578

    PubMed  PubMed Central  Google Scholar 

  • Dear TN, Boehm T (1999) Diverse mRNA expression patterns of the mouse calpain genes Capn5, Capn6 and Capn11 during development. Mech Dev 89:201–209

    CAS  PubMed  Google Scholar 

  • Detmar J, Rabaglino T, Taniuchi Y, Oh J, Acton BM, Benito A, Nunez G, Jurisicova A (2006) Embryonic loss due to exposure to polycyclic aromatic hydrocarbons is mediated by Bax. Apoptosis 11:1413–1425

    CAS  PubMed  Google Scholar 

  • Detmar J, Rennie MY, Whiteley KJ, Qu D, Taniuchi Y, Shang X, Casper RF, Adamson SL, Sled JG, Jurisicova A, Detmar J, My R, Kj W, Qu D, Taniuchi Y, Rf C, Sl A, Jg S, J a F (2008) Fetal growth restriction triggered by polycyclic aromatic hydrocarbons is associated with altered placental vasculature and AhR -dependent changes in cell death. Am Physiol Soc 5:519–530

    Google Scholar 

  • Dimmeler S, Zeiher AM (2000) Endothelial cell apoptosis in angiogenesis and vessel regression. Circ Res 87:434–439

    CAS  PubMed  Google Scholar 

  • Doetschman T, Parkitna JR, Engblom D, Tessarollo L, Palko ME, Akagi K, Coppola V, Ku R, Wurst W, Lee S, Wang W, Liu P (2009) Gene knockout protocols. Gene 530:15–27

    Google Scholar 

  • Echeverry N, Bachmann D, Ke F, Strasser A, Simon HU, Kaufmann T (2013) Intracellular localization of the BCL-2 family member BOK and functional implications. Cell Death Differ 20:785–799

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernando P, Kelly JF, Balazsi K, Slack RS, Megeney LA (2002) Caspase 3 activity is required for skeletal muscle differentiation. Proc Natl Acad Sci U S A 99:11025–11030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Finucane DM, Bossy-wetzel E, Waterhouse NJ, Cotter TG, Green DR (1999) Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. J Biol Chem 274:2225–2233

    CAS  PubMed  Google Scholar 

  • Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147:742–758

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita J, Crane AM, Souza MK, Dejosez M, Kyba M, Flavell RA, Thomson JA, Zwaka TP (2008) Caspase activity mediates the differentiation of embryonic stem cells. Cell Stem Cell 2:595–601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Georgiades P, Fergyson-Smith AC, Burton GJ (2002) Comparative developmental anatomy of the murine and human definitive placentae. Placenta 23:3–19

    CAS  PubMed  Google Scholar 

  • Gobeil S, Boucher CC, Nadeau D, Poirier GG (2001) Characterization of the necrotic cleavage of poly (ADP-ribose) polymerase (PARP-1): implication of lysosomal proteases. Cell Death Differ 8:588–594

    CAS  PubMed  Google Scholar 

  • Gong J-S, Kim GJ (2014) The role of autophagy in the placenta as a regulator of cell death. Clin Exp Reprod Med 41:97–107

    PubMed  PubMed Central  Google Scholar 

  • Grasl-Kraupp B, Ruttkay-Nedecky B, Koudelka H, Bukowska K, Bursch W, Schulte-Hermann R (1995) In situ detection of fragmented DNA (tunel assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: a cautionary note. Hepatology 21:1465–1468

    CAS  PubMed  Google Scholar 

  • Hu D, Cross JC (2010) Development and function of trophoblast giant cells in the rodent. placenta. 354:341–354

    Google Scholar 

  • Hung TH, Chen SF, Lo LM, Li MJ, Yeh YL, Hsieh TT (2012) Increased autophagy in placentas of intrauterine growth-restricted pregnancies. PLoS One 7:e40957

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huppertz B, Kingdom JCP (2004) Apoptosis in the trophoblast--role of apoptosis in placental morphogenesis. J Soc Gynecol Investig 11:353–362

    CAS  PubMed  Google Scholar 

  • Huppertz B, Frank HG, Kingdom JCP, Reister F, Kaufmann P (1998) Villous cytotrophoblast regulation of the syncytial apoptotic cascade in the human placenta. Histochem Cell Biol 110:495–508

    CAS  PubMed  Google Scholar 

  • Janzen V, Fleming HE, Riedt T, Karlsson G, Riese MJ, Lo Celso C, Reynolds G, Milne CD, Paige CJ, Karlsson S, Woo M, Scadden DT (2008) Hematopoietic stem cell responsiveness to exogenous signals is limited by caspase-3. Cell Stem Cell 2:584–594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jurisicova A, Detmar J, Caniggia I (2005) Molecular mechanisms of trophoblast survival: from implantation to birth. Birth Defects Res Part C - Embryo Today Rev 75:262–280

    CAS  Google Scholar 

  • Kalkat M, Garcia J, Ebrahimi J, Melland-Smith M, Todros T, Post M, Caniggia I (2013) Placental autophagy regulation by the BOK-MCL1 rheostat. Autophagy 9:2140–2153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ke F, Voss A, Kerr JB, O’Reilly LA, Tai L, Echeverry N, Bouillet P, Strasser A, Kaufmann T (2012) BCL-2 family member BOK is widely expressed but its loss has only minimal impact in mice. Cell Death Differ 19:915–925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ke FFS, Vanyai HK, Cowan AD, Delbridge ARD, Whitehead L, Grabow S, Czabotar PE, Voss AK, Strasser A (2018) Embryogenesis and adult life in the absence of intrinsic apoptosis effectors BAX, BAK, and BOK. Cell 173:1217–1230.e17

    CAS  PubMed  Google Scholar 

  • Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nuñez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G (2009) Classification of cell death: recommendations of the nomenclature committee on cell death 2009. Cell Death Differ 16:3–11

    CAS  PubMed  Google Scholar 

  • Kulandavelu S, Qu D, Sunn N, Mu J, Rennie MY, Whiteley KJ, Walls JR, Bock NA, Sun JCH, Covelli A, Sled JG, Adamson SL (2006) Embryonic and neonatal phenotyping of genetically engineered mice. ILAR J 47:103–117

    CAS  PubMed  Google Scholar 

  • Kyathanahalli C, Marks J, Nye K, Lao B, Albrecht ED, Aberdeen GW, Nathanielsz PW, Jeyasuria P, Condon JC (2013) Cross-species withdrawal of MCL1 facilitates postpartum uterine involution in both the mouse and baboon. Endocrinology 154:4873–4884

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamkanfi M, Festjens N, Declercq W, Vanden Berghe T, Vandenabeele P (2007) Caspases in cell survival, proliferation and differentiation. Cell Death Differ 14:44–55

    CAS  PubMed  Google Scholar 

  • Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC (1994) Cleavage of poly (ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371:346–347

    CAS  PubMed  Google Scholar 

  • Levy R, Smith SD, Yusuf K, Huettner PC, Kraus FT, Sadovsky Y, Nelson DM (2002) Trophoblast apoptosis from pregnancies complicated by fetal growth restriction is associated with enhanced p53 expression. Am J Obs Gynecol 186:1056–1061

    CAS  Google Scholar 

  • Linder CC (2006) Genetic variables that influence phenotype. ILAR J 47:132–140

    CAS  PubMed  Google Scholar 

  • Longtine MS, Chen B, Odibo AO, Zhong Y, Nelson DM (2012) Villous trophoblast apoptosis is elevated and restricted to cytotrophoblasts in pregnancies complicated by preeclampsia, IUGR, or preeclampsia with IUGR. Placenta 33:352–359

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGinnis KM, Gnegy ME, Park YH, Mukerjee N, Wang KK (1999) Procaspase-3 and poly (ADP) ribose polymerase (PARP) are calpain substrates. Biochem Biophys Res Commun 263:94–99

    CAS  PubMed  Google Scholar 

  • Melland-Smith M, Ermini L, Chauvin S, Craig-Barnes H, Tagliaferro A, Todros T, Post M, Caniggia I (2015) Disruption of sphingolipid metabolism augments ceramide-induced autophagy in preeclampsia. Autophagy 11:653–669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nadhan R, Vaman JV, Nirmala C, Kumar Sengodan S, Krishnakumar Hemalatha S, Rajan A, Varghese GR, RL N, BV AK, Thankappan R, Srinivas P (2017) Insights into dovetailing GTD and cancers. Crit Rev Oncol Hematol 114:77–90

    PubMed  Google Scholar 

  • Namura S, Zhu J, Fink K, Endres M, Srinivasan A, Tomaselli KJ, Yuan J, Moskowitz MA (2018) Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci 18:3659–3668

    Google Scholar 

  • Penaloza C, Lin L, Lockshin RA, Zakeri Z (2006) Cell death in development: shaping the embryo. Histochem Cell Biol 126:149–158

    CAS  PubMed  Google Scholar 

  • Ray JE, Garcia J, Jurisicova A, Caniggia I (2010) Mtd/Bok takes a swing: proapoptotic Mtd/Bok regulates trophoblast cell proliferation during human placental development and in preeclampsia. Cell Death Differ 17:846–859

    CAS  PubMed  Google Scholar 

  • Rennie MY, Whiteley KJ, Jurisicova A, Detmar J, Adamson SL, Sled JG (2012) Expansion of the fetoplacental vasculature in late gestation is strain dependent in mice. Am J Physiol Circ Physiol 302:H1261–H1273

    CAS  Google Scholar 

  • Rodríguez-Vargas JM, Ruiz-Magãa MJ, Ruiz-Ruiz C, Majuelos-Melguizo J, Peralta-Leal A, Rodríguez MI, Muñoz-Gámez JA, De Almodóvar MR, Siles E, Rivas AL, Jäättela M, Oliver FJ (2012) ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy. Cell Res 22:1181–1198

    PubMed  PubMed Central  Google Scholar 

  • Rossant J, Cross JC (2001) Placental development: lessons from mouse mutants. Nat Rev Genet 2:538–548

    CAS  PubMed  Google Scholar 

  • Screen M, Dean W, Cross JC, Hemberger M (2008) Cathepsin proteases have distinct roles in trophoblast function and vascular remodelling. Development 135:3311–3320

    CAS  PubMed  Google Scholar 

  • Shah GM, Shah RG, Poirier GG (1996) Different cleavage pattern for poly ( ADP-ribose ) polymerase during necrosis and apoptosis in HL-60 cells ( 1 , 2 ). These two forms of cell death are generally characterized by visualizing the disruption ( 1 , 3 ). Since proteases play a crucial role in. Biochem Biophys Res Commun 844:838–844

    Google Scholar 

  • Shalini S, Dorstyn L, Dawar S, Kumar S (2015) Old, new and emerging functions of caspases. Cell Death Differ 22:526–539

    CAS  PubMed  Google Scholar 

  • Sharp AN, Heazell AEP, Crocker IP, Mor G (2010) Placental apoptosis in health and disease. Am J Reprod Immunol 64:159–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SC, Baker PN, Symonds EM (1997) Placental apoptosis in normal human pregnancy. Am J Obstet Gynecol 177:57–65

    CAS  PubMed  Google Scholar 

  • Smith SC, Leung TN, To KF, Baker PN (2000) Apoptosis is a rare event in first-trimester placental tissue. Am J Obstet Gynecol 183:697–699

    CAS  PubMed  Google Scholar 

  • Soleymanlou N, Wu Y, Wang JX, Todros T, Ietta F, Jurisicova A, Post M, Caniggia I (2005) A novel Mtd splice isoform is responsible for trophoblast cell death in pre-eclampsia. Cell Death Differ 12:441–452

    CAS  PubMed  Google Scholar 

  • Soleymanlou N, Jurisicova A, Wu Y, Chijiiwa M, Ray JE, Detmar J, Todros T, Zamudio S, Post M, Caniggia I (2007) Hypoxic switch in mitochondrial myeloid cell leukemia factor-1/Mtd apoptotic rheostat contributes to human trophoblast cell death in preeclampsia. Am J Pathol 171:496–506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soncin F, Khater M, To C, Pizzo D, Farah O, Wakeland A, Arul Nambi Rajan K, Nelson KK, Chang C-W, Moretto-Zita M, Natale DR, Laurent LC, Parast MM (2018) Comparative analysis of mouse and human placentae across gestation reveals species-specific regulators of placental development. Development 145:dev156273

    PubMed  PubMed Central  Google Scholar 

  • Sosna J, Voigt S, Mathieu S, Lange A, Thon L, Davarnia P, Herdegen T, Linkermann A, Rittger A, Chan FKM, Kabelitz D, Schutze S, Adam D (2014) TNF-induced necroptosis and PARP-1-mediated necrosis represent distinct routes to programmed necrotic cell death. Cell Mol Life Sci 71:331–348

    CAS  PubMed  Google Scholar 

  • Sundquist T, Moravec R, Niles A, O’Brien M, Riss T, Corporation P (2006) Timing your apoptosis assays. Cell Notes 16:18–21

    Google Scholar 

  • Tertemiz F (2005) Apoptosis contributes to vascular lumen formation and vascular branching in human placental vasculogenesis. Biol Reprod 72:727–735

    CAS  PubMed  Google Scholar 

  • Varanou A, Withington SL, Lakasing L, Williamson C, Burton GJ, Hemberger M (2006) The importance of cysteine cathepsin proteases for placental development. J Mol Med 84:305–317

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by research grants from the SickKids Foundation and NSERC (RGPIN-04497) to AJ and Canadian Institute of Health Research (MOP-89813) awarded to IC. During these studies, JD was funded by a Doctoral Research Award from the National Sciences and Engineering Research Council, JR was funded by CIHR DRA scholarship and Genesis foundation OGS program and IR was supported by LTRI-OSOTF program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Jurisicova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All mouse experiments were performed in accordance with the Canadian Council on Animal Care (CCAC) guidelines for Use of Animals in Research and Laboratory Animal Care under protocols approved by animal care committees at Mount Sinai Hospital or the Toronto Centre for Phenogenomics.

Informed consent

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Detmar, J., Rovic, I., Ray, J. et al. Placental cell death patterns exhibit differences throughout gestation in two strains of laboratory mice. Cell Tissue Res 378, 341–358 (2019). https://doi.org/10.1007/s00441-019-03055-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-019-03055-1

Keywords

Navigation