Skip to main content

Advertisement

Log in

Differential expression and regulation of Runx1 in mouse uterus during the peri-implantation period

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Runx1 transcription factor is a key developmental regulator. However, little is known about the effects of Runx1 on embryo implantation and decidualization. The aim of this study is to examine the expression and regulation of Runx1 in mouse uterus during the peri-implantation period. There was no evident Runx1 mRNA signal on days 1–4 of pregnancy. On day 5 of pregnancy, Runx1 mRNA was mainly localized in the subluminal stroma surrounding the implanting blastocyst. A similar result was observed in the estrogen-activated implantation uterus. Simultaneously, a high level of Runx1 mRNA expression was detected on days 6–8 of pregnancy and under artificial decidualization. 8-Br-cAMP could induce the expression of Runx1 mRNA in the uterine stromal cells. Moreover, the induction was obviously blocked by PKA inhibitor H89. Inhibition of Runx1 with specific siRNA could decrease the proliferation of stromal cells and expression of decidual markers Prl8a2 and Prl3c1 in the uterine stromal cells. Further study found that inhibition of Runx1 could also suppress the expression of Cox-2, mPGES-1 and Mmp2 genes in uterine stromal cells. Estrogen and progesterone could induce the expression of Runx1 mRNA in ovariectomized mouse uterus and uterine stromal cells. Taken together, these data suggest that Runx1 may play an important role during mouse decidualization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Athilakshmi K, Shanmugasundaram N, Li QX, DeMayo FJ, Lydon JP, Bagchi MK, Bagchi IC (2011) Runx1 functions downstream of BMP2 to regulate uterine stromal differentiation and blood vessel formation at the maternal-fetal interface. Biol Reprod 85(Meeting Abstracts):180

  • Bai ZK, Guo B, Tian XC, Li DD, Wang ST, Cao H, Wang QY, Yue ZP (2013) Expression and regulation of Runx3 in mouse uterus during the peri-implantation period. J Mol Histol 44:519–526

    Article  CAS  PubMed  Google Scholar 

  • Bany BM, Harvey MB, Schultz GA (2000) Expression of matrix metalloproteinases 2 and 9 in the mouse uterus during implantation and oil-induced decidualization. J Reprod Fertil 120:125–134

    Article  CAS  PubMed  Google Scholar 

  • Blyth K, Cameron ER, Neil JC (2005) The RUNX genes: gain or loss of function in cancer. Nat Rev Cancer 5:376–387

    Article  CAS  PubMed  Google Scholar 

  • Blyth K, Vaillant F, Jenkins A, McDonald L, Pringle MA, Huser C, Stein T, Neil J, Cameron ER (2010) Runx2 in normal tissues and cancer cells: A developing story. Blood Cells Mol Dis 45:117–123

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Belton RJ Jr, Nowak RA (2009) Basigin-mediated gene expression changes in mouse uterine stromal cells during implantation. Endocrinology 150:966–976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chimge NO, Frenkel B (2013) The RUNX family in breast cancer: relationships with estrogen signaling. Oncogene 32:2121–2130

    Article  CAS  PubMed  Google Scholar 

  • Chuang LS, Ito K, Ito Y (2013) RUNX family: Regulation and diversification of roles through interacting proteins. Int J Cancer 132:1260–1271

    Article  CAS  PubMed  Google Scholar 

  • Dey SK, Lim H, Das SK, Reese J, Paria BC, Daikoku T, Wang H (2004) Molecular cues to implantation. Endocr Rev 25:341–373

    Article  CAS  PubMed  Google Scholar 

  • Gellersen B, Brosens J (2003) Cyclic AMP and progesterone receptor cross-talk in human endometrium: a decidualizing affair. J Endocrinol 178:357–372

    Article  CAS  PubMed  Google Scholar 

  • Giroux V, Lemay F, Bernatchez G, Robitaille Y, Carrier JC (2008) Estrogen receptor beta deficiency enhances small intestinal tumorigenesis in ApcMin/+ mice. Int J Cancer 123:303–311

    Article  CAS  PubMed  Google Scholar 

  • Jo M, Curry TE Jr (2006) Luteinizing hormone-induced RUNX1 regulates the expression of genes in granulosa cells of rat periovulatory follicles. Mol Endocrinol 20:2156–2172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kilbey A, Terry A, Jenkins A, Borland G, Zhang Q, Wakelam MJ, Cameron ER, Neil JC (2010) Runx regulation of sphingolipid metabolism and survival signaling. Cancer Res 70:5860–5869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim JH, Jang JW, Lee YS, Lee JW, Chi XZ, Li YH, Kim MK, Kim DM, Choi BS, Kim J, Kim HM, van Wijnen A, Park I, Bae SC (2014) RUNX family members are covalently modified and regulated by PIAS1-mediated sumoylation. Oncogenesis 3:e101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kitoh A, Ono M, Naoe Y, Ohkura N, Yamaguchi T, Yaguchi H, Kitabayashi I, Tsukada T, Nomura T, Miyachi Y, Taniuchi I, Sakaguchi S (2009) Indispensable role of the Runx1-Cbfbeta transcription complex for in vivo-suppressive function of FoxP3+ regulatory T cells. Immunity 31:609–620

    Article  CAS  PubMed  Google Scholar 

  • Klauber N, Rohan RM, Flynn E, D'Amato RJ (1997) Critical components of the female reproductive pathway are suppressed by the angiogenesis inhibitor AGM-1470. Nat Med 3:443–446

    Article  CAS  PubMed  Google Scholar 

  • Klunker S, Chong MM, Mantel PY, Palomares O, Bassin C, Ziegler M, Rückert B, Meiler F, Akdis M, Littman DR, Akdis CA (2009) Transcription factors RUNX1 and RUNX3 in the induction and suppressive function of Foxp3+ inducible regulatory T cells. J Exp Med 206:2701–2715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764

    Article  CAS  PubMed  Google Scholar 

  • Levanon D, Groner Y (2004) Structure and regulated expression of mammalian RUNX genes. Oncogene 23:4211–4219

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Park ES, Jo M (2009) Runt-related transcription factor 1 regulates luteinized hormone-induced prostaglandin-endoperoxide synthase 2 expression in rat periovulatory granulosa cells. Endocrinology 150:3291–3300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McConaha ME, Eckstrum K, An J, Steinle JJ, Bany BM (2011) Microarray assessment of the influence of the conceptus on gene expression in the mouse uterus during decidualization. Reproduction 141:511–527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Numao A, Hosono K, Suzuki T, Hayashi I, Uematsu S, Akira S, Ogino Y, Kawauchi H, Unno N, Majima M (2011) The inducible prostaglandin E synthase mPGES-1 regulates growth of endometrial tissues and angiogenesis in a mouse implantation model. Biomed Pharmacother 65:77–84

    Article  CAS  PubMed  Google Scholar 

  • Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR (1996) AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84:321–330

    Article  CAS  PubMed  Google Scholar 

  • Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89:765–771

    Article  CAS  PubMed  Google Scholar 

  • Ozaki T, Nakagawara A, Nagase H (2013) RUNX Family Participates in the Regulation of p53-Dependent DNA Damage Response. Int J Genomics 2013:271347

    Article  PubMed Central  PubMed  Google Scholar 

  • Rankin JC, Ledford BE, Baggett B (1977) Early involvement of cyclic nucleotides in the artificially stimulated decidual cell reaction in the mouse uterus. Biol Reprod 17:549–554

    Article  CAS  PubMed  Google Scholar 

  • Sakuma A, Fukamachi H, Ito K, Ito Y, Takeuchi S, Takahashi S (2008) Loss of Runx3 affects ovulation and estrogen-induced endometrial cell proliferation in female mice. Mol Reprod Dev 75:1653–1661

    Article  CAS  PubMed  Google Scholar 

  • Shao J, Li MQ, Meng YH, Chang KK, Wang Y, Zhang L, Li DJ (2013) Estrogen promotes the growth of decidual stromal cells in human early pregnancy. Mol Hum Reprod 19:655–664

    Article  CAS  PubMed  Google Scholar 

  • Stender JD, Kim K, Charn TH, Komm B, Chang KC, Kraus WL, Benner C, Glass CK, Katzenellenbogen BS (2010) Genome-wide analysis of estrogen receptor alpha DNA binding and tethering mechanisms identifies Runx1 as a novel tethering factor in receptor-mediated transcriptional activation. Mol Cell Biol 30:3943–3955

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun L, Vitolo MI, Qiao M, Anglin IE, Passaniti A (2004) Regulation of TGFbeta1-mediated growth inhibition and apoptosis by RUNX2 isoforms in endothelial cells. Oncogene 23:4722–4734

    Article  CAS  PubMed  Google Scholar 

  • Takakura N, Watanabe T, Suenobu S, Yamada Y, Noda T, Ito Y, Satake M, Suda T (2000) A role for hematopoietic stem cells in promoting angiogenesis. Cell 102:199–209

    Article  CAS  PubMed  Google Scholar 

  • Tian XC, Wang QY, Li DD, Wang ST, Yang ZQ, Guo B, Yue ZP (2013) Differential expression and regulation of Cryab in mouse uterus during preimplantation period. Reproduction 145:577–585

    Article  CAS  PubMed  Google Scholar 

  • Wall EH, Hewitt SC, Liu L, del Rio R, Case LK, Lin CY, Korach KS, Teuscher C (2013) Genetic control of estrogen-regulated transcriptional and cellular responses in mouse uterus. FASEB J 27:1874–1886

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu M, Li C, Zhu G, Wang Y, Jules J, Lu Y, McConnell M, Wang YJ, Shao JZ, Li YP, Chen W (2014) Deletion of core-binding factor β (Cbfβ) in mesenchymal progenitor cells provides new insights into Cbfβ/Runxs complex function in cartilage and bone development. Bone 65:49–59

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Lin H, Kong S, Wang S, Wang H, Wang H, Armant DR (2013) Physiological and molecular determinants of embryo implantation. Mol Aspects Med 34:939–980

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Special Funds for Scientific Research on Public Causes (201303119) and the National Natural Science Foundation of China (31302048, 31372390 and 31472158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Guo.

Additional information

Zhi-Kun Bai and Dang-Dang Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, ZK., Li, DD., Guo, CH. et al. Differential expression and regulation of Runx1 in mouse uterus during the peri-implantation period. Cell Tissue Res 362, 231–240 (2015). https://doi.org/10.1007/s00441-015-2174-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2174-z

Keywords

Navigation