Skip to main content

Advertisement

Log in

Evolving gene regulatory networks into cellular networks guiding adaptive behavior: an outline how single cells could have evolved into a centralized neurosensory system

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Understanding the evolution of the neurosensory system of man, able to reflect on its own origin, is one of the major goals of comparative neurobiology. Details of the origin of neurosensory cells, their aggregation into central nervous systems and associated sensory organs and their localized patterning leading to remarkably different cell types aggregated into variably sized parts of the central nervous system have begun to emerge. Insights at the cellular and molecular level have begun to shed some light on the evolution of neurosensory cells, partially covered in this review. Molecular evidence suggests that high mobility group (HMG) proteins of pre-metazoans evolved into the definitive Sox [SRY (sex determining region Y)-box] genes used for neurosensory precursor specification in metazoans. Likewise, pre-metazoan basic helix-loop-helix (bHLH) genes evolved in metazoans into the group A bHLH genes dedicated to neurosensory differentiation in bilaterians. Available evidence suggests that the Sox and bHLH genes evolved a cross-regulatory network able to synchronize expansion of precursor populations and their subsequent differentiation into novel parts of the brain or sensory organs. Molecular evidence suggests metazoans evolved patterning gene networks early, which were not dedicated to neuronal development. Only later in evolution were these patterning gene networks tied into the increasing complexity of diffusible factors, many of which were already present in pre-metazoans, to drive local patterning events. It appears that the evolving molecular basis of neurosensory cell development may have led, in interaction with differentially expressed patterning genes, to local network modifications guiding unique specializations of neurosensory cells into sensory organs and various areas of the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed M, Wong EY, Sun J, Xu J, Wang F, Xu PX (2012a) Eya1-Six1 interaction is sufficient to induce hair cell fate in the cochlea by activating Atoh1 expression in cooperation with Sox2. Dev Cell 22:377–390

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ahmed M, Xu J, Xu PX (2012b) EYA1 and SIX1 drive the neuronal developmental program in cooperation with the SWI/SNF chromatin-remodeling complex and SOX2 in the mammalian inner ear. Development 139:1965–1977

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ait Benkhali J, Coppin E, Brun S, Peraza-Reyes L, Martin T, Dixelius C, Lazar N, van Tilbeurgh H, Debuchy R (2013) A network of HMG-box transcription factors regulates sexual cycle in the fungus Podospora anserina. PLoS Genet 9:e1003642

    PubMed Central  PubMed  Google Scholar 

  • Akhshabi S, Sarda S, Dovrolis C, Yi S (2013) An explanatory evo-devo model for the developmental hourglass. arXiv preprint arXiv:13094722

  • Albert B, Colleran C, Leger-Silvestre I, Berger AB, Dez C, Normand C, Perez-Fernandez J, McStay B, Gadal O (2013) Structure-function analysis of Hmo1 unveils an ancestral organization of HMG-Box factors involved in ribosomal DNA transcription from yeast to human. Nucleic Acids Res 41:10135–10149

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arendt D (2005) Genes and homology in nervous system evolution: comparing gene functions, expression patterns, and cell type molecular fingerprints. Theory Biosci 124:185–197

    CAS  PubMed  Google Scholar 

  • Arendt D, Tessmar-Raible K, Snyman H, Dorresteijn AW, Wittbrodt J (2004) Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science 306:869–871

    CAS  PubMed  Google Scholar 

  • Arendt D, Denes AS, Jekely G, Tessmar-Raible K (2008) The evolution of nervous system centralization. Philos Trans R Soc Lond B 363:1523–1528

    Google Scholar 

  • Arendt D, Hausen H, Purschke G (2009) The ‘division of labour’ model of eye evolution. Philos Trans R Soc Lond B 364:2809–2817

    Google Scholar 

  • Beccari L, Marco-Ferreres R, Bovolenta P (2013) The logic of gene regulatory networks in early vertebrate forebrain patterning. Mech Dev 130:95–111

    CAS  PubMed  Google Scholar 

  • Begbie J, Brunet JF, Rubenstein JL, Graham A (1999) Induction of the epibranchial placodes. Development 126:895–902

    CAS  PubMed  Google Scholar 

  • Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben-Arie N, Eatock RA, Bellen HJ, Lysakowski A, Zoghbi HY (1999) Math1: an essential gene for the generation of inner ear hair cells. Science 284:1837–1841

    CAS  PubMed  Google Scholar 

  • Bermingham NA, Hassan BA, Wang VY, Fernandez M, Banfi S, Bellen HJ, Fritzsch B, Zoghbi HY (2001) Proprioceptor pathway development is dependent on Math1. Neuron 30:411–422

    CAS  PubMed  Google Scholar 

  • Bertrand V, Hudson C, Caillol D, Popovici C, Lemaire P (2003) Neural tissue in ascidian embryos is induced by FGF9/16/20, acting via a combination of maternal GATA and Ets transcription factors. Cell 115:615–627

    CAS  PubMed  Google Scholar 

  • Bouchard M, de Caprona D, Busslinger M, Xu P, Fritzsch B (2010) Pax2 and Pax8 cooperate in mouse inner ear morphogenesis and innervation. BMC Dev Biol 10:89

    PubMed Central  PubMed  Google Scholar 

  • Bourlat SJ, Juliusdottir T, Lowe CJ, Freeman R, Aronowicz J, Kirschner M, Lander ES, Thorndyke M, Nakano H, Kohn AB, Heyland A, Moroz LL, Copley RR, Telford MJ (2006) Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature 444:85–88

    CAS  PubMed  Google Scholar 

  • Brown FD, Prendergast A, Swalla BJ (2008) Man is but a worm: chordate origins. Genesis 46:605–613

    PubMed  Google Scholar 

  • Budd GE (2001) Why are arthropods segmented? Evol Dev 3:332–342

    CAS  PubMed  Google Scholar 

  • Bullock T (1965) The nervous system of hemichordates. In: Bullock T, Horridge G (eds) Structure and function in the nervous systems of invertebrates. Freeman, San Francisco, pp 1567–1157

    Google Scholar 

  • Bylund M, Andersson E, Novitch BG, Muhr J (2003) Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat Neurosci 6:1162–1168

    CAS  PubMed  Google Scholar 

  • Campo-Paysaa F, Semon M, Cameron RA, Peterson KJ, Schubert M (2011) microRNA complements in deuterostomes: origin and evolution of microRNAs. Evol Dev 13:15–27

    CAS  PubMed  Google Scholar 

  • Chattwood A, Nagayama K, Bolourani P, Harkin L, Kamjoo M, Weeks G, Thompson CR (2013) Developmental lineage priming in Dictyostelium by heterogeneous Ras activation. eLife 2:e01067

  • Chen J, Streit A (2013) Induction of the inner ear: stepwise specification of otic fate from multipotent progenitors. Hear Res 297:3–12

    PubMed  Google Scholar 

  • Chen J, Dai F, Balakrishnan-Renuka A, Leese F, Schempp W, Schaller F, Hoffmann MM, Morosan-Puopolo G, Yusuf F, Bisschoff IJ, Chankiewitz V, Xue J, Chen J, Ying K, Brand-Saberi B (2011) Diversification and molecular evolution of ATOH8, a gene encoding a bHLH transcription factor. PLoS ONE 6:e23005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng LC, Pastrana E, Tavazoie M, Doetsch F (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12:399–408

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cox BC, Chai R, Lenoir A, Liu Z, Zhang L, Nguyen DH, Chalasani K, Steigelman KA, Fang J, Cheng AG, Zuo J (2014) Spontaneous hair cell regeneration in the neonatal mouse cochlea in vivo. Development 141:816–829

    CAS  PubMed  Google Scholar 

  • Dabdoub A, Puligilla C, Jones JM, Fritzsch B, Cheah KS, Pevny LH, Kelley MW (2008) Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proc Natl Acad Sci U S A 105:18396–18401

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davidson EH (2010) The regulatory genome: gene regulatory networks in development and evolution. Academic, Amsterdam

  • Dayel MJ, Alegado RA, Fairclough SR, Levin TC, Nichols SA, McDonald K, King N (2011) Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta. Dev Biol 357:73–82

    CAS  PubMed Central  PubMed  Google Scholar 

  • Degnan BM, Vervoort M, Larroux C, Richards GS (2009) Early evolution of metazoan transcription factors. Curr Opin Genet Dev 19:591–599

    CAS  PubMed  Google Scholar 

  • Dekkers MP, Barde YA (2013) Developmental biology. Programmed cell death in neuronal development. Science 340:39–41

    CAS  PubMed  Google Scholar 

  • Delaune E, Lemaire P, Kodjabachian L (2005) Neural induction in Xenopus requires early FGF signalling in addition to BMP inhibition. Development 132:299–310

    CAS  PubMed  Google Scholar 

  • Dias AS, de Almeida I, Belmonte JM, Glazier JA, Stern CD (2014) Somites without a clock. Science 343:791–795

    CAS  PubMed  Google Scholar 

  • Doniach T, Phillips CR, Gerhart JC (1992) Planar induction of anteroposterior pattern in the developing central nervous system of Xenopus laevis. Science 257:542–545

    CAS  PubMed  Google Scholar 

  • Dufour HD, Chettouh Z, Deyts C, de Rosa R, Goridis C, Joly J-S, Brunet J-F (2006) Precraniate origin of cranial motoneurons. Proc Natl Acad Sci USA 103:8727–8732

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duncan JS, Fritzsch B (2013) Continued expression of GATA3 is necessary for cochlear neurosensory development. PLoS ONE 8:e62046

    CAS  PubMed Central  PubMed  Google Scholar 

  • Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75:1417–1430

    CAS  PubMed  Google Scholar 

  • Elliott KL, Houston DW, Fritzsch B (2013) Transplantation of Xenopus laevis tissues to determine the ability of motor neurons to acquire a novel target. PLoS ONE 8:e55541

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fairclough SR, Chen Z, Kramer E, Zeng Q, Young S, Robertson HM, Begovic E, Richter DJ, Russ C, Westbrook MJ, Manning G, Lang BF, Haas B, Nusbaum C, King N (2013) Premetazoan genome evolution and the regulation of cell differentiation in the choanoflagellate Salpingoeca rosetta. Genome Biol 14:R15

    PubMed Central  PubMed  Google Scholar 

  • Forrest MP, Hill MJ, Quantock AJ, Martin-Rendon E, Blake DJ (2014) The emerging roles of TCF4 in disease and development. Trends Mol Med 20: 322-331

  • Fortunato SA, Leininger S, Adamska M (2014) Evolution of the Pax-Six-Eya-Dach network: the calcisponge case study. EvoDevo 5:23

    PubMed Central  PubMed  Google Scholar 

  • Fritzsch B (1998) Of mice and genes: evolution of vertebrate brain development. Brain Behav Evol 52:207–217

    CAS  PubMed  Google Scholar 

  • Fritzsch B, Glover JC (2006) Evolution of the deuterostome central nervous system: an intercalation of developmental patterning processes with cellular specification processes. In: Kaas JH (ed) Evolution of the Nervous System, vol 2. Academic, Oxford, pp 1–24

    Google Scholar 

  • Fritzsch B, Northcutt RG (1993) Cranial and spinal nerve organization in amphioxus and lampreys: evidence for an ancestral craniate pattern. Acta Anat (Basel) 148:96–109

    CAS  Google Scholar 

  • Fritzsch B, Straka H (2014) Evolution of vertebrate mechanosensory hair cells and inner ears: toward identifying stimuli that select mutation driven altered morphologies. J Comp Physiol A 200:5–18

    Google Scholar 

  • Fritzsch B, Tessarollo L, Coppola E, Reichardt LF (2004) Neurotrophins in the ear: their roles in sensory neuron survival and fiber guidance. Prog Brain Res 146:265–278

    CAS  PubMed  Google Scholar 

  • Fritzsch B, Matei VA, Nichols DH, Bermingham N, Jones K, Beisel KW, Wang VY (2005) Atoh1 null mice show directed afferent fiber growth to undifferentiated ear sensory epithelia followed by incomplete fiber retention. Dev Dyn 233:570–583

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fritzsch B, Beisel KW, Hansen LA (2006) The molecular basis of neurosensory cell formation in ear development: a blueprint for hair cell and sensory neuron regeneration? Bioessays 28:1181–1193

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fritzsch B, Beisel KW, Pauley S, Soukup G (2007) Molecular evolution of the vertebrate mechanosensory cell and ear. Int J Dev Biol 51:663–678

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fritzsch B, Eberl DF, Beisel KW (2010) The role of bHLH genes in ear development and evolution: revisiting a 10-year-old hypothesis. Cell Mol Life Sci 67:3089–3099

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fritzsch B, Pan N, Jahan I, Duncan JS, Kopecky BJ, Elliott KL, Kersigo J, Yang T (2013) Evolution and development of the tetrapod auditory system: an organ of Corti-centric perspective. Evol Dev 15:63–79

    PubMed Central  PubMed  Google Scholar 

  • Gans C, Northcutt RG (1983) Neural Crest and the Origin of Vertebrates: A New Head. Science 220:268–273

    CAS  PubMed  Google Scholar 

  • Gokoffski KK, Wu HH, Beites CL, Kim J, Kim EJ, Matzuk MM, Johnson JE, Lander AD, Calof AL (2011) Activin and GDF11 collaborate in feedback control of neuroepithelial stem cell proliferation and fate. Development 138:4131–4142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gordan R, Shen N, Dror I, Zhou T, Horton J, Rohs R, Bulyk ML (2013) Genomic regions flanking E-box binding sites influence DNA binding specificity of bHLH transcription factors through DNA shape. Cell Rep 3:1093–1104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guth SI, Wegner M (2008) Having it both ways: Sox protein function between conservation and innovation. Cell Mol Life Sci 65:3000–3018

    CAS  PubMed  Google Scholar 

  • Gyoja F (2014) A genome-wide survey of bHLH transcription factors in the Placozoan Trichoplax adhaerens reveals the ancient repertoire of this gene family in metazoan. Gene 542:29–37

    CAS  PubMed  Google Scholar 

  • Hallbook F, Wilson K, Thorndyke M, Olinski RP (2006) Formation and evolution of the chordate neurotrophin and Trk receptor genes. Brain Behav Evol 68:133–144

    PubMed  Google Scholar 

  • Harris WA, Hartenstein V (1991) Neuronal determination without cell division in Xenopus embryos. Neuron 6:499–515

    CAS  PubMed  Google Scholar 

  • Harzsch S, Muller CH (2007) A new look at the ventral nerve centre of Sagitta: implications for the phylogenetic position of Chaetognatha (arrow worms) and the evolution of the bilaterian nervous system. Front Zool 4:14

    PubMed Central  PubMed  Google Scholar 

  • Herculano-Houzel S (2010) Coordinated scaling of cortical and cerebellar numbers of neurons. Front Neuroanat 4

  • Herculano-Houzel S (2012) The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc Natl Acad Sci USA 109:10661–10668

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ikeda M, Fujiwara S, Mitsuda N, Ohme-Takagi M (2012) A triantagonistic basic helix-loop-helix system regulates cell elongation in Arabidopsis. Plant Cell 24:4483–4497

    CAS  PubMed Central  PubMed  Google Scholar 

  • Imayoshi I, Kageyama R (2014) bHLH factors in self-renewal, multipotency, and fate choice of neural progenitor cells. Neuron 82:9–23

    CAS  PubMed  Google Scholar 

  • Ingham PW, McMahon AP (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15:3059–3087

    CAS  PubMed  Google Scholar 

  • Jahan I, Pan N, Kersigo J, Fritzsch B (2010) Neurod1 suppresses hair cell differentiation in ear ganglia and regulates hair cell subtype development in the cochlea. PLoS ONE 5:e11661

    PubMed Central  PubMed  Google Scholar 

  • Jahan I, Pan N, Kersigo J, Calisto LE, Morris KA, Kopecky B, Duncan JS, Beisel KW, Fritzsch B (2012) Expression of Neurog1 instead of Atoh1 can partially rescue organ of Corti cell survival. PLoS ONE 7:e30853

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jahan I, Pan N, Kersigo J, Fritzsch B (2013) Beyond generalized hair cells: molecular cues for hair cell types. Hear Res 297:30–41

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnston RJ Jr, Desplan C (2014) Interchromosomal communication coordinates intrinsically stochastic expression between alleles. Science 343:661–665

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kersigo J, D’Angelo A, Gray BD, Soukup GA, Fritzsch B (2011) The role of sensory organs and the forebrain for the development of the craniofacial shape as revealed by Foxg1-cre-mediated microRNA loss. Genesis 49:326–341

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kiernan AE, Pelling AL, Leung KK, Tang AS, Bell DM, Tease C, Lovell-Badge R, Steel KP, Cheah KS (2005) Sox2 is required for sensory organ development in the mammalian inner ear. Nature 434:1031–1035

    CAS  PubMed  Google Scholar 

  • King N (2004) The unicellular ancestry of animal development. Dev Cell 7:313–325

    CAS  PubMed  Google Scholar 

  • Koehler KR, Mikosz AM, Molosh AI, Patel D, Hashino E (2013) Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature 500:217–221

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kopecky BJ, Jahan I, Fritzsch B (2013) Correct timing of proliferation and differentiation is necessary for normal inner ear development and auditory hair cell viability. Dev Dyn 242:132–147

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kruger M, Schmid T, Kruger S, Bober E, Braun T (2006) Functional redundancy of NSCL-1 and NeuroD during development of the petrosal and vestibulocochlear ganglia. Eur J Neurosci 24:1581–1590

    PubMed  Google Scholar 

  • Lai H, Meredith D, Johnson E (2013) bHLH Factors in Neurogenesis and Neuronal Subtype Specification. Patterning and Cell Type Specification in the Developing CNS and PNS. Compr Dev Neurosci 1:333

    Google Scholar 

  • Lamb TD (2013) Evolution of phototransduction, vertebrate photoreceptors and retina. Prog Retin Eye Res 36:52–119

  • Lamborghini JE (1980) Rohon–beard cells and other large neurons in Xenopus embryos originate during gastrulation. J Comp Neurol 189:323–333

    CAS  PubMed  Google Scholar 

  • Lee JE, Hollenberg SM, Snider L, Turner DL, Lipnick N, Weintraub H (1995) Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science 268:836–844

    CAS  PubMed  Google Scholar 

  • Levin TC, Greaney AJ, Wetzel L, King N, Sánchez Alvarado A (2014) The rosetteless gene controls development in the choanoflagellate S. rosetta. eLife 3

  • Lindahl M, Danilova T, Palm E, Lindholm P, Voikar V, Hakonen E, Ustinov J, Andressoo JO, Harvey BK, Otonkoski T, Rossi J, Saarma M (2014) MANF is indispensable for the proliferation and survival of pancreatic beta cells. Cell Rep 7:366–375

    CAS  PubMed  Google Scholar 

  • Lindholm P, Saarma M (2010) Novel CDNF/MANF family of neurotrophic factors. Dev Neurobiol 70:360–371

    CAS  PubMed  Google Scholar 

  • Lindstrom R, Lindholm P, Kallijarvi J, Yu LY, Piepponen TP, Arumae U, Saarma M, Heino TI (2013) Characterization of the structural and functional determinants of MANF/CDNF in Drosophila in vivo model. PLoS ONE 8:e73928

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Z, Fang J, Dearman J, Zhang L, Zuo J (2014) In vivo generation of immature inner hair cells in neonatal mouse cochleae by ectopic atoh1 expression. PLoS ONE 9:e89377

    PubMed Central  PubMed  Google Scholar 

  • Lowe CJ (2008) Molecular genetic insights into deuterostome evolution from the direct-developing hemichordate Saccoglossus kowalevskii. Philos Trans R Soc Lond B 363:1569–1578

    Google Scholar 

  • Lowe CJ, Wu M, Salic A, Evans L, Lander E, Stange-Thomann N, Gruber CE, Gerhart J, Kirschner M (2003) Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell 113:853–865

    CAS  PubMed  Google Scholar 

  • Lowe CJ, Terasaki M, Wu M, Freeman RM Jr, Runft L, Kwan K, Haigo S, Aronowicz J, Lander E, Gruber C, Smith M, Kirschner M, Gerhart J (2006) Dorsoventral patterning in hemichordates: insights into early chordate evolution. PLoS Biol 4:e291

    PubMed Central  PubMed  Google Scholar 

  • Ma Q, Kintner C, Anderson DJ (1996) Identification of neurogenin, a vertebrate neuronal determination gene. Cell 87:43–52

    CAS  PubMed  Google Scholar 

  • Ma Q, Chen Z, del Barco BI, de la Pompa JL, Anderson DJ (1998) neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20:469–482

    CAS  PubMed  Google Scholar 

  • Ma Q, Anderson DJ, Fritzsch B (2000) Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. J Assoc Res Otolaryngol 1:129–143

    CAS  PubMed Central  PubMed  Google Scholar 

  • Magie CR, Daly M, Martindale MQ (2007) Gastrulation in the cnidarian Nematostella vectensis occurs via invagination not ingression. Dev Biol 305:483–497

    CAS  PubMed  Google Scholar 

  • Mak AC, Szeto IY, Fritzsch B, Cheah KS (2009) Differential and overlapping expression pattern of SOX2 and SOX9 in inner ear development. Gene Expr Patterns 9:444–453

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mao Y, Reiprich S, Wegner M, Fritzsch B (2014) Targeted deletion of Sox10 by Wnt1-cre defects neuronal migration and projection in the mouse inner ear. PLoS ONE 9:e94580

    PubMed Central  PubMed  Google Scholar 

  • Martin SG, Arkowitz RA (2014) Cell polarization in budding and fission yeasts. FEMS Microbiol Rev 38:228-253

  • Martindale MQ (2013) Evolution of development: the details are in the entrails. Curr Biol 23:R25–R28

    CAS  PubMed  Google Scholar 

  • Martindale MQ, Lee PN (2013) The development of form: Causes and consequences of developmental reprogramming associated with rapid body plan evolution in the bilaterian radiation. Biol Theory 8:253–264

    Google Scholar 

  • Martindale MQ, Pang K, Finnerty JR (2004) Investigating the origins of triploblasty: ‘mesodermal’ gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa). Development 131:2463–2474

    CAS  PubMed  Google Scholar 

  • Matei V, Pauley S, Kaing S, Rowitch D, Beisel KW, Morris K, Feng F, Jones K, Lee J, Fritzsch B (2005) Smaller inner ear sensory epithelia in Neurog 1 null mice are related to earlier hair cell cycle exit. Dev Dyn 234:633–650

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matkovic T, Siebert M, Knoche E, Depner H, Mertel S, Owald D, Schmidt M, Thomas U, Sickmann A, Kamin D (2013) The Bruchpilot cytomatrix determines the size of the readily releasable pool of synaptic vesicles. J Cell Biol 202:667–683

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matus DQ, Pang K, Daly M, Martindale MQ (2007a) Expression of Pax gene family members in the anthozoan cnidarian, Nematostella vectensis. Evol Dev 9:25–38

    CAS  PubMed  Google Scholar 

  • Matus DQ, Thomsen GH, Martindale MQ (2007b) FGF signaling in gastrulation and neural development in Nematostella vectensis, an anthozoan cnidarian. Dev Genes Evol 217:137–148

    CAS  PubMed  Google Scholar 

  • Mazza ME, Pang K, Martindale MQ, Finnerty JR (2007) Genomic organization, gene structure, and developmental expression of three clustered otx genes in the sea anemone Nematostella vectensis. J Exp Zool B 308:494–506

  • Meinhardt H (2004) Different strategies for midline formation in bilaterians. Nat Rev Neurosci 5:502–510

    CAS  PubMed  Google Scholar 

  • Meinhardt H (2013) From Hydra to Vertebrates: Models for the Transition from Radial-to Bilateral-Symmetric Body Plans. Pattern Formation in Morphogenesis. Springer, Berlin, pp 207–224

  • Mizutari K, Fujioka M, Hosoya M, Bramhall N, Okano HJ, Okano H, Edge AS (2013) Notch inhibition induces cochlear hair cell regeneration and recovery of hearing after acoustic trauma. Neuron 77:58–69

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murakami Y, Pasqualetti M, Takio Y, Hirano S, Rijli FM, Kuratani S (2004) Segmental development of reticulospinal and branchiomotor neurons in lamprey: insights into the evolution of the vertebrate hindbrain. Development 131:983–995

    CAS  PubMed  Google Scholar 

  • Murakami Y, Uchida K, Rijli FM, Kuratani S (2005) Evolution of the brain developmental plan: Insights from agnathans. Dev Biol 280:249–259

    CAS  PubMed  Google Scholar 

  • Nakano Y, Jahan I, Bonde G, Sun X, Hildebrand MS, Engelhardt JF, Smith RJ, Cornell RA, Fritzsch B, Bánfi B (2012) A mutation in the Srrm4 gene causes alternative splicing defects and deafness in the Bronx waltzer mouse. PLoS Genet 8:e1002966

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neriec N, Desplan C (2014) Different ways to make neurons: parallel evolution in the SoxB family. Genome Biol 15:116

    PubMed  Google Scholar 

  • Newman SA (2014) Form and function remixed: developmental physiology in the evolution of vertebrate body plans. J Physiol 592:2403–2412

    CAS  PubMed  Google Scholar 

  • Newman SA, Bhat R (2009) Dynamical patterning modules: a “pattern language” for development and evolution of multicellular form. Int J Dev Biol 53:693–705

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (2002) Deuterostome brains: synopsis and commentary. Brain Res Bull 57:257–270

    PubMed  Google Scholar 

  • Nieuwenhuys R, Donkelaar HJ, Nicholson C, Smeets W, Wicht H (1998) The central nervous system of vertebrates. Springer, Berlin

    Google Scholar 

  • Northcutt RG (2012) Evolution of centralized nervous systems: two schools of evolutionary thought. Proc Natl Acad Sci USA 109:10626–10633

    CAS  PubMed Central  PubMed  Google Scholar 

  • Northcutt RG, Gans C (1983) The genesis of neural crest and epidermal placodes: a reinterpretation of vertebrate origins. Q Rev Biol 58:1–28

    CAS  PubMed  Google Scholar 

  • Nosenko T, Schreiber F, Adamska M, Adamski M, Eitel M, Hammel J, Maldonado M, Muller WE, Nickel M, Schierwater B, Vacelet J, Wiens M, Worheide G (2013) Deep metazoan phylogeny: when different genes tell different stories. Mol Phylogenet Evol 67:223–233

    PubMed  Google Scholar 

  • Ohyama T, Groves AK, Martin K (2007) The first steps towards hearing: mechanisms of otic placode induction. Int J Dev Biol 51:463–472

    CAS  PubMed  Google Scholar 

  • O’Neill P, Mak S-S, Fritzsch B, Ladher RK, Baker CV (2012) The amniote paratympanic organ develops from a previously undiscovered sensory placode. Nat Commun 3:1041

    PubMed Central  PubMed  Google Scholar 

  • Oppenheim R (1991) Cell death during development of the nervous system. Annu Rev Neurosci 14:453–501

    CAS  PubMed  Google Scholar 

  • Osigus HJ, Eitel M, Schierwater B (2013) Chasing the urmetazoon: striking a blow for quality data? Mol Phylogenet Evol 66:551–557

    PubMed  Google Scholar 

  • Pan N, Jahan I, Lee JE, Fritzsch B (2009) Defects in the cerebella of conditional Neurod1 null mice correlate with effective Tg(Atoh1-cre) recombination and granule cell requirements for Neurod1 for differentiation. Cell Tissue Res 337:407–428

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pan N, Kopecky B, Jahan I, Fritzsch B (2012) Understanding the evolution and development of neurosensory transcription factors of the ear to enhance therapeutic translation. Cell Tissue Res 349:415–432

    PubMed Central  PubMed  Google Scholar 

  • Pani AM, Mullarkey EE, Aronowicz J, Assimacopoulos S, Grove EA, Lowe CJ (2012) Ancient deuterostome origins of vertebrate brain signalling centres. Nature 483:289–294

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patthey C, Schlosser G, Shimeld SM (2014) The evolutionary history of vertebrate cranial placodes - I: Cell type evolution. Dev Biol 389:82-97

  • Paulin MG (2014) Pattern Formation and Animal Morphogenesis. Springer Handbook of Bio-/Neuroinformatics. Springer, Berlin, pp 73–92

  • Peterson KJ, Dietrich MR, McPeek MA (2009) MicroRNAs and metazoan macroevolution: insights into canalization, complexity, and the Cambrian explosion. Bioessays 31:736–747

    CAS  PubMed  Google Scholar 

  • Peterson KJ, Su YH, Arnone MI, Swalla B, King BL (2013) MicroRNAs support the monophyly of enteropneust hemichordates. J Exp Zool B 320:368–374

    CAS  Google Scholar 

  • Pierce ML, Weston MD, Fritzsch B, Gabel HW, Ruvkun G, Soukup GA (2008) MicroRNA-183 family conservation and ciliated neurosensory organ expression. Evol Dev 10:106–113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Puelles L, Harrison M, Paxinos G, Watson C (2013) A developmental ontology for the mammalian brain based on the prosomeric model. Trends Neurosci 36:570–578

    CAS  PubMed  Google Scholar 

  • Puligilla C, Dabdoub A, Brenowitz SD, Kelley MW (2010) Sox2 induces neuronal formation in the developing mammalian cochlea. J Neurosci 30:714–722

    CAS  PubMed Central  PubMed  Google Scholar 

  • Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, Jurka J, Genikhovich G, Grigoriev IV, Lucas SM, Steele RE, Finnerty JR, Technau U, Martindale MQ, Rokhsar DS (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:86–94

    CAS  PubMed  Google Scholar 

  • Raft S, Groves AK (2014) Segregating neural and mechanosensory fates in the developing ear: patterning, signaling, and transcriptional control. Cell Tissue Res (in press)

  • Raft S, Koundakjian EJ, Quinones H, Jayasena CS, Goodrich LV, Johnson JE, Segil N, Groves AK (2007) Cross-regulation of Ngn1 and Math1 coordinates the production of neurons and sensory hair cells during inner ear development. Development 134:4405–4415

    CAS  PubMed  Google Scholar 

  • Raikova OI, Reuter M, Jondelius U, Gustafsson MKS (2000) An immunocytochemical and utrastructural study of the nervous and muscular system of Xenoturbella westbladi (Bilateria inc. sed.). Zoomorphology 120:107–118

    Google Scholar 

  • Raj B, Irimia M, Braunschweig U, Sterne-Weiler T, O’Hanlon D, Lin Z-Y, Chen GI, Easton LE, Ule J, Gingras A-C (2014) A Global Regulatory Mechanism for Activating an Exon Network Required for Neurogenesis. Mol Cell 56:90-103

  • Reichert H (2009) Evolutionary conservation of mechanisms for neural regionalization, proliferation and interconnection in brain development. Biol Lett 5:112–116

    PubMed Central  PubMed  Google Scholar 

  • Reichert H, Simeone A (1999) Conserved usage of gap and homeotic genes in patterning the CNS. Curr Opin Neurobiol 9:589–595

    CAS  PubMed  Google Scholar 

  • Reiprich S, Wegner M (2014) From CNS stem cells to neurons and glia: Sox for everyone. Cell Tissue Res (in press)

  • Richards GS, Simionato E, Perron M, Adamska M, Vervoort M, Degnan BM (2008) Sponge genes provide new insight into the evolutionary origin of the neurogenic circuit. Curr Biol 18:1156–1161

    CAS  PubMed  Google Scholar 

  • Rosengauer E, Hartwich H, Hartmann AM, Rudnicki A, Satheesh SV, Avraham KB, Nothwang HG (2012) Egr2: cre mediated conditional ablation of dicer disrupts histogenesis of mammalian central auditory nuclei. PLoS ONE 7:e49503

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roybon L, Hjalt T, Stott S, Guillemot F, Li JY, Brundin P (2009) Neurogenin2 directs granule neuroblast production and amplification while NeuroD1 specifies neuronal fate during hippocampal neurogenesis. PLoS ONE 4:e4779

    PubMed Central  PubMed  Google Scholar 

  • Rue P, Garcia-Ojalvo J (2013) Modeling gene expression in time and space. Annu Rev Biophys 42:605–627

    CAS  PubMed  Google Scholar 

  • Ryan JF (2014) Did the ctenophore nervous system evolve independently? Zoology 117:225–226

    PubMed  Google Scholar 

  • Ryan JF, Pang K, Schnitzler CE, Nguyen A-D, Moreland RT, Simmons DK, Koch BJ, Francis WR, Havlak P, Smith SA (2013) The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science 342:1242592

    PubMed Central  PubMed  Google Scholar 

  • Salazar-Ciudad I, Jernvall J, Newman SA (2003) Mechanisms of pattern formation in development and evolution. Development 130:2027–2037

    CAS  PubMed  Google Scholar 

  • Sasai N, Yakura R, Kamiya D, Nakazawa Y, Sasai Y (2008) Ectodermal factor restricts mesoderm differentiation by inhibiting p53. Cell 133:878–890

    CAS  PubMed  Google Scholar 

  • Satoh N (2008) An aboral-dorsalization hypothesis for chordate origin. Genesis 46:614–622

    PubMed  Google Scholar 

  • Satterlie RA (2011) Do jellyfish have central nervous systems? J Exp Biol 214:1215–1223

    PubMed  Google Scholar 

  • Sauka-Spengler T, Bronner-Fraser M (2008) Evolution of the neural crest viewed from a gene regulatory perspective. Genesis 46:673–682

    PubMed  Google Scholar 

  • Schlosser G, Patthey C, Shimeld SM (2014) The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning. Dev Biol 389:98-119

  • Schnitzler CE, Simmons DK, Pang K, Martindale MQ, Baxevanis AD (2014) Expression of multiple Sox genes through embryonic development in the ctenophore Mnemiopsis leidyi is spatially restricted to zones of cell proliferation. EvoDevo 5:15

    PubMed Central  PubMed  Google Scholar 

  • Sebé-Pedrós A, Irimia M, Del Campo J, Parra-Acero H, Russ C, Nusbaum C, Blencowe BJ, Ruiz-Trillo I (2013) Regulated aggregative multicellularity in a close unicellular relative of metazoa. eLife 2:e01287

    PubMed Central  PubMed  Google Scholar 

  • Seipel K, Yanze N, Schmid V (2004) Developmental and evolutionary aspects of the basic helix-loop-helix transcription factors Atonal-like 1 and Achaete-scute homolog 2 in the jellyfish. Dev Biol 269:331–345

    CAS  PubMed  Google Scholar 

  • Shubin N, Tabin C, Carroll S (2009) Deep homology and the origins of evolutionary novelty. Nature 457:818–823

    CAS  PubMed  Google Scholar 

  • Silos-Santiago I, Fagan AM, Garber M, Fritzsch B, Barbacid M (1997) Severe sensory deficits but normal CNS development in newborn mice lacking TrkB and TrkC tyrosine protein kinase receptors. Eur J Neurosci 9:2045–2056

    CAS  PubMed  Google Scholar 

  • Simionato E, Ledent V, Richards G, Thomas-Chollier M, Kerner P, Coornaert D, Degnan BM, Vervoort M (2007) Origin and diversification of the basic helix-loop-helix gene family in metazoans: insights from comparative genomics. BMC Evol Biol 7:33

    PubMed Central  PubMed  Google Scholar 

  • Soukup GA, Fritzsch B, Pierce ML, Weston MD, Jahan I, McManus MT, Harfe BD (2009) Residual microRNA expression dictates the extent of inner ear development in conditional Dicer knockout mice. Dev Biol 328:328–341

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sprinzak D, Lakhanpal A, LeBon L, Garcia-Ojalvo J, Elowitz MB (2011) Mutual inactivation of Notch receptors and ligands facilitates developmental patterning. PLoS Comput Biol 7:e1002069

    CAS  PubMed Central  PubMed  Google Scholar 

  • Srinivasan S, Hu JS, Currle DS, Fung ES, Hayes WB, Lander AD, Monuki ES (2014) A BMP-FGF Morphogen Toggle Switch Drives the Ultrasensitive Expression of Multiple Genes in the Developing Forebrain. PLoS Comput Biol 10:e1003463

    PubMed Central  PubMed  Google Scholar 

  • Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier ME, Mitros T, Richards GS, Conaco C, Dacre M, Hellsten U (2010) The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466:720–726

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stefanelli A (1950) Studies on the development of Mauthner’s cell. Genet Neurol 161–165

  • Stergachis AB, Neph S, Reynolds A, Humbert R, Miller B, Paige SL, Vernot B, Cheng JB, Thurman RE, Sandstrom R, Haugen E, Heimfeld S, Murry CE, Akey JM, Stamatoyannopoulos JA (2013) Developmental fate and cellular maturity encoded in human regulatory DNA landscapes. Cell 154:888–903

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stern DL (2013) The genetic causes of convergent evolution. Nat Rev Genet 14:751–764

    CAS  PubMed  Google Scholar 

  • Steventon B, Mayor R, Streit A (2014) Neural crest and placode interaction during the development of the cranial sensory system. Dev Biol 389:28-38

  • Straka H, Fritzsch B, Glover JC (2014) Connecting ears to eye muscles: evolution of a ‘simple’ reflex arc. Brain Behav Evol 83:162–175

    PubMed  Google Scholar 

  • Streit A (2007) The preplacodal region: an ectodermal domain with multipotential progenitors that contribute to sense organs and cranial sensory ganglia. Int J Dev Biol 51:447–461

    CAS  PubMed  Google Scholar 

  • Streit A, Berliner AJ, Papanayotou C, Sirulnik A, Stern CD (2000) Initiation of neural induction by FGF signalling before gastrulation. Nature 406:74–78

    CAS  PubMed  Google Scholar 

  • Streit A, Tambalo M, Chen J, Grocott T, Anwar M, Sosinsky A, Stern CD (2013) Experimental approaches for gene regulatory network construction: the chick as a model system. Genesis 51:296–310

    CAS  PubMed Central  PubMed  Google Scholar 

  • Striedter GF (2005) Principles of brain evolution. Sinauer, Sunderland

  • Südhof TC (2012) The presynaptic active zone. Neuron 75:11–25

    PubMed Central  PubMed  Google Scholar 

  • Südhof TC, Rizo J (2011) Synaptic vesicle exocytosis. Cold Spring Harbor Perspect Biol 3:a005637

    Google Scholar 

  • Suga H, Chen Z, de Mendoza A, Sebé-Pedrós A, Brown MW, Kramer E, Carr M, Kerner P, Vervoort M, Sánchez-Pons N (2013) The Capsaspora genome reveals a complex unicellular prehistory of animals. Nat Commun 4:2325

  • Swalla BJ, Smith AB (2008) Deciphering deuterostome phylogeny: molecular, morphological and palaeontological perspectives. Philos Trans R Soc Lond B 363:1557–1568

    Google Scholar 

  • Swalla BJ, Xavier-Neto J (2008) Chordate origins and evolution. Genesis 46:575–579

    PubMed  Google Scholar 

  • Tamm SL (2014) Cilia and the life of ctenophores. Invertebr Biol 133:1-46

  • Taylor AR, Gifondorwa DJ, Robinson MB, Strupe JL, Prevette D, Johnson JE, Hempstead B, Oppenheim RW, Milligan CE (2012) Motoneuron programmed cell death in response to proBDNF. Dev Neurobiol 72:699–712

    CAS  PubMed Central  PubMed  Google Scholar 

  • Urbach R, Technau GM (2004) Neuroblast formation and patterning during early brain development in Drosophila. Bioessays 26:739–751

    CAS  PubMed  Google Scholar 

  • von Bartheld CS, Fritzsch B (2006) Comparative analysis of neurotrophin receptors and ligands in vertebrate neurons: tools for evolutionary stability or changes in neural circuits? Brain Behav Evol 68:157–172

    Google Scholar 

  • Wagner A (2011) The molecular origins of evolutionary innovations. Trends Genet 27:397–410

    CAS  PubMed  Google Scholar 

  • Wang VY, Hassan BA, Bellen HJ, Zoghbi HY (2002) Drosophila atonal fully rescues the phenotype of Math1 null mice: new functions evolve in new cellular contexts. Curr Biol 12:1611–1616

    CAS  PubMed  Google Scholar 

  • Weiler S, Krinner S, Wong AB, Moser T, Pangrsic T (2014) ATP Hydrolysis Is Critically Required for Function of CaV1.3 Channels in Cochlear Inner Hair Cells via Fueling Ca2+ Clearance. J Neurosci 34:6843–6848

    CAS  PubMed  Google Scholar 

  • Wilhelm BG, Mandad S, Truckenbrodt S, Krohnert K, Schafer C, Rammner B, Koo SJ, Classen GA, Krauss M, Haucke V, Urlaub H, Rizzoli SO (2014) Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science 344:1023–1028

    CAS  PubMed  Google Scholar 

  • Wolber LE, Steves CJ, Tsai P-C, Deloukas P, Spector TD, Bell JT, Williams FM (2014) Epigenome-Wide DNA Methylation in Hearing Ability: New Mechanisms for an Old Problem. PLoS ONE 9:e105729

    PubMed Central  PubMed  Google Scholar 

  • Xia T, Tong J, Rathore SS, Gu X, Dickerson JA (2012) Network motif comparison rationalizes Sec1/Munc18-SNARE regulation mechanism in exocytosis. BMC Syst Biol 6:19

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xia C, Wang YJ, Liang Y, Niu QK, Tan XY, Chu LC, Chen LQ, Zhang XQ, Ye D (2014) The ARID-HMG DNA-binding protein AtHMGB15 is required for pollen tube growth in Arabidopsis thaliana. Plant J Cell Mol Biol 79:741–756

    CAS  Google Scholar 

  • Yamada A, Pang K, Martindale MQ, Tochinai S (2007) Surprisingly complex T-box gene complement in diploblastic metazoans. Evol Dev 9:220–230

    CAS  PubMed  Google Scholar 

  • Yanai I, Peshkin L, Jorgensen P, Kirschner MW (2011) Mapping gene expression in two Xenopus species: evolutionary constraints and developmental flexibility. Dev Cell 20:483–496

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoo AS, Crabtree GR (2009) ATP-dependent chromatin remodeling in neural development. Curr Opin Neurobiol 19:120–126

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoo AS, Staahl BT, Chen L, Crabtree GR (2009) MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature 460:642–646

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zine A, Löwenheim H, Fritzsch B (2014) Toward Translating Molecular Ear Development to Generate Hair Cells from Stem Cells. Adult Stem Cells. Springer, New York, pp 111–161

    Google Scholar 

  • Zou D, Erickson C, Kim EH, Jin D, Fritzsch B, Xu PX (2008) Eya1 gene dosage critically affects the development of sensory epithelia in the mammalian inner ear. Hum Mol Genet 17:3340–3356

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH (P30 DC 010362, R03 DC013655), NASA Base Program and the OVPR, University of Iowa. We thank Drs. S. Reiprich and U. Ernsberger as well as two unknown reviewers for helpful comments and suggestions to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Fritzsch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fritzsch, B., Jahan, I., Pan, N. et al. Evolving gene regulatory networks into cellular networks guiding adaptive behavior: an outline how single cells could have evolved into a centralized neurosensory system. Cell Tissue Res 359, 295–313 (2015). https://doi.org/10.1007/s00441-014-2043-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-2043-1

Keywords

Navigation