Skip to main content
Log in

Clustering of Kir4.1 at specialized compartments of the lateral membrane in ependymal cells of rat brain

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Brain ependymal cells, which form an epithelial layer covering the cerebral ventricles, have been shown to play a role in the regulation of cerebrospinal and interstitial fluids. The machinery underlying this, however, remains largely unknown. Here, we report the specific localization of an inwardly rectifying K+ channel, Kir4.1, on the ependymal cell membrane suggesting involvement of the channel in this function. Immunohistochemical study with confocal microscopy identified Kir4.1 labeling on the lateral but not apical membrane of ependymal cells. Ultrastructural analysis revealed that Kir4.1-immunogold particles were specifically localized and clustered on adjacent membranes at puncta adherens type junctions, whereas an aquaporin water channel, AQP4, that was also detected on the lateral membrane only occurred at components other than adherens junctions. Therefore, in ependymal cells, Kir4.1 and AQP4 are partitioned into distinct membrane compartments that might respectively transport either K+ or water. Kir4.1 was also expressed in a specialized form of ependymal cell, namely the tanycyte, being abundant in tanycyte processes wrapping neuropils and blood vessels. These specific localizations suggest that Kir4.1 mediates intercellular K+ exchange between ependymal cells and also K+-buffering transport via tanycytes that can interconnect neurons and vessels/ventricles. We propose that ependymal cells and tanycytes differentially operate Kir4.1 and AQP4 actively to control the property of fluids at local areas in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amiry-Moghaddam M, Otsuka T, Hurn PD, Traystman RJ, Haug FM, Froehner SC, Adams ME, Neely JD, Agre P, Ottersen OP, Bhardwaj A (2003) An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci U S A 100:2106–2111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Avizienyte E, Wyke AW, Jones RJ, McLean GW, Westhoff MA, Brunton VG, Frame MC (2002) Src-induced de-regulation of E-cadherin in colon cancer cells requires integrin signalling. Nat Cell Biol 4:632–638

    CAS  PubMed  Google Scholar 

  • Barth AI, Nathke IS, Nelson WJ (1997) Cadherins, catenins and APC protein: interplay between cytoskeletal complexes and signaling pathways. Curr Opin Cell Biol 9:683–690

    Article  CAS  PubMed  Google Scholar 

  • Beardslee MA, Lerner DL, Tadros PN, Laing JG, Beyer EC, Yamada KA, Kléber AG, Schuessler RB, Saffitz JE (2000) Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia. Circ Res 87:656–662

    Article  CAS  PubMed  Google Scholar 

  • Bianchi L, Arcangeli A, Bartolini P, Mugnai G, Wanke E, Olivotto M (1995) An inward rectifier K+ current modulates in neuroblastoma cells the tyrosine phosphorylation of the pp125FAK and associated proteins: role in neuritogenesis. Biochem Biophys Res Commun 210:823–829

    Article  CAS  PubMed  Google Scholar 

  • Bondy C, Chin E, Smith BL, Preston GM, Agre P (1993) Developmental gene expression and tissue distribution of the CHIP28 water-channel protein. Proc Natl Acad Sci U S A 90:4500–4504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brightman MW, Palay SL (1963) The fine structure of ependyma in the brain of the rat. J Cell Biol 19:415–439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brone B, Eggermont J (2005) PDZ proteins retain and regulate membrane transporters in polarized epithelial cell membranes. Am J Physiol Cell Physiol 288:C20–C29

    CAS  PubMed  Google Scholar 

  • Brown D, Rose J (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544

    Article  CAS  PubMed  Google Scholar 

  • Bruni JE (1998) Ependymal development, proliferation, and functions: a review. Microsc Res Tech 41:2–13

    Article  CAS  PubMed  Google Scholar 

  • De Maio A, Vega VL, Contreras JE (2002) Gap junctions, homeostasis, and injury. J Cell Physiol 191:269–282

    Article  PubMed  Google Scholar 

  • Dermietzel R, Traub O, Hwang TK, Beyer E, Bennett MV, Spray DC, Willecke K (1989) Differential expression of three gap junction proteins in developing and mature brain tissues. Proc Natl Acad Sci U S A 86:10148–10152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dietzel I, Heinemann U, Hofmeier G, Lux HD (1980) Transient changes in the size of the extracellular space in the sensorimotor cortex of cats in relation to stimulus-induced changes in potassium concentration. Exp Brain Res 40:432–439

    Article  CAS  PubMed  Google Scholar 

  • Djukic B, Casper KB, Philpot BD, Chin LS, McCarthy KD (2007) Conditional knock-out of Kir4.1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and enhanced short-term synaptic potentiation. J Neurosci 27:11354–11365

    Article  CAS  PubMed  Google Scholar 

  • Eid T, Lee TS, Thomas MJ, Amiry-Moghaddam M, Bjørnsen LP, Spencer DD, Agre P, Ottersen OP, Lanerolle NC de (2005) Loss of perivascular aquaporin 4 may underlie deficient water and K+ homeostasis in the human epileptogenic hippocampus. Proc Natl Acad Sci U S A 102:1193–1198

  • Frigeri A, Gropper MA, Umenishi F, Kawashima M, Brown D, Verkman AS (1995) Localization of MIWC and GLIP water channel homologs in neuromuscular epithelial and glandular tissues. J Cell Sci 108:2993–3002

    CAS  PubMed  Google Scholar 

  • Fujita A, Kurachi Y (2000) SAP family protein. Biochem Biophys Res Commun 269:1–6

    Article  CAS  PubMed  Google Scholar 

  • Fujita A, Horio Y, Higashi K, Mouri T, Hata F, Takeguchi N, Kurachi Y (2002) Specific localization of an inwardly rectifying K+ channel, Kir4.1, at the apical membrane of rat gastric parietal cells; its possible involvement in K+ recycling for the H+-K+-pump. J Physiol (Lond) 540:85–92

    Article  CAS  Google Scholar 

  • Gould SJ, Howard S, Papadaki L (1990) The development of ependyma in the human fetal brain: an immunohistological and electron microscopic study. Brain Res Dev Brain Res 55:255–267

    Article  CAS  PubMed  Google Scholar 

  • Gumbiner BM (2000) Regulation of cadherin adhesive activity. J Cell Biol 148:399–404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hasegawa H, Lian SC, Finkbeiner WE, Verkman AS (1994) Extrarenal tissue distribution of CHIP28 water channels by in situ hybridization and antibody staining. Am J Physiol 266:C893–C903

    CAS  PubMed  Google Scholar 

  • Hertz L, Chen Y, Spatz M (2000) Involvement of non-neuronal brain cells in AVP-mediated regulation of water space at the cellular, organ, and whole-body level. J Neurosci Res 62:480–490

    Article  CAS  PubMed  Google Scholar 

  • Hibino H, Kurachi Y (2007) Distinct detergent-resistant membrane microdomains (lipid rafts) respectively harvest K+ and water transport systems in brain astroglia. Eur J Neurosci 26:2539–2555

    Article  PubMed  Google Scholar 

  • Hibino H, Fujita A, Iwai K, Yamada M, Kurachi Y (2004) Differential assembly of inwardly rectifying K+ channel subunits, Kir4.1 and Kir5.1, in brain astrocytes. J Biol Chem 279:44065–44073

    Article  CAS  PubMed  Google Scholar 

  • Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y (2010) Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 90:291–366

    Article  CAS  PubMed  Google Scholar 

  • Higashi K, Fujita A, Inanobe A, Tanemoto M, Doi K, Kubo T, Kurachi Y (2001) An inwardly rectifying K+ channel, Kir4.1, expressed in astrocytes surrounds synapses and blood vessels in brain. Am J Physiol 281:C922–C931

    CAS  Google Scholar 

  • Ikonen E (2001) Roles of lipid rafts in membrane transport. Curr Opin Cell Biol 13:470–477

    Article  CAS  PubMed  Google Scholar 

  • Ishii M, Horio Y, Tada Y, Hibino H, Inanobe A, Ito M, Yamada M, Gotow T, Uchiyama Y, Kurachi Y (1997) Expression and clustered distribution of an inwardly rectifying potassium channel, KAB-2/Kir4.1, on mammalian retinal Müller cell membrane: their regulation by insulin and laminin signals. J Neurosci 17:7725–7735

    CAS  PubMed  Google Scholar 

  • Ito M, Inanobe A, Horio Y, Hibino H, Isomoto S, Ito H, Mori K, Tonosaki A, Tomoike H, Kurachi Y (1996) Immunolocalization of an inwardly rectifying K+ channel, KAB-2 (Kir4.1), in the basolateral membrane of renal distal tubular epithelia. FEBS Lett 388:11–15

    Article  CAS  PubMed  Google Scholar 

  • Jarvis CR, Andrew RD (1988) Correlated electrophysiology and morphology of the ependyma in rat hypothalamus. J Neurosci 8:3691–3702

    CAS  PubMed  Google Scholar 

  • Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96:25–34

    Article  CAS  PubMed  Google Scholar 

  • Jung JS, Bhat RV, Preston GM, Guggino WB, Baraban JM, Agre P (1994) Molecular characterization of an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance. Proc Natl Acad Sci U S A 91:13052–13056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Madrid R, Le Maout S, Barrault MB, Janvier K, Benichou S, Merot J (2001) Polarized trafficking and surface expression of the AQP4 water channel are coordinated by serial and regulated interactions with different clathrin-adaptor complexes. EMBO J 20:7008–7021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, Verkman AS (2000) Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6:159–163

    Article  CAS  PubMed  Google Scholar 

  • Marrs JA, Napolitano EW, Murphy-Erdosh C, Mays RW, Reichardt LF, Nelson WJ (1993) Distinguishing roles of the membrane-cytoskeleton and cadherin mediated cell-cell adhesion in generating different Na+, K+-ATPase distributions in polarized epithelia. J Cell Biol 123:149–164

    Article  CAS  PubMed  Google Scholar 

  • Martinez AD, Saez JC (2000) Regulation of astrocyte gap junctions by hypoxia-reoxygenation. Brain Res Brain Res Rev 32:250–258

    Article  CAS  PubMed  Google Scholar 

  • Matsubara A, Laake JH, Davanger S, Usami S, Ottersen OP (1996) Organization of AMPA receptor subunits at a glutamate synapse: a quantitative immunogold analysis of hair cell synapses in the rat organ of Corti. J Neurosci 16:4457–4467

    CAS  PubMed  Google Scholar 

  • Mugnaini E (1986) Cell junctions of astrocytes, ependyma, and related cells in the mammalian central nervous system, with emphasis on the hypothesis of a generalized functional syncytium of supporting cells. In: Fedoroff S, Vernadakis A (eds) Development, morphology, and regional specialization of astrocytes. Astrocytes, vol 1. Academic Press, New York, pp 329–371

    Google Scholar 

  • Nagelhus EA, Veruki ML, Torp R, Haug F-M, Laake JH, Nielsen S, Agre P, Ottersen OP (1998) Aquaporin-4 water channel protein in the rat retina and optic nerve: polarized expression in Müller cells and fibrous astrocytes. J Neurosci 18:2506–2519

    CAS  PubMed  Google Scholar 

  • Nagelhus EA, Horio Y, Inanobe A, Fujita A, Haug FM, Nielsen S, Kurachi Y, Ottersen OP (1999) Immunogold evidence suggests that coupling of K+ siphoning and water transport in rat retinal Müller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membrane domains. Glia 26:47–54

    Article  CAS  PubMed  Google Scholar 

  • Neusch C, Papadopoulos N, Müller M, Maletzki I, Winter SM, Hirrlinger J, Handschuh M, Bähr M, Richter DW, Kirchhoff F, Hülsmann S (2006) Lack of the Kir4.1 channel subunit abolishes K+ buffering properties of astrocytes in the ventral respiratory group: impact on extracellular K+ regulation. J Neurophysiol 95:1843–1852

    Article  CAS  PubMed  Google Scholar 

  • Nielsen S, Smith BL, Christensen EI, Agre P (1993) Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci U S A 90:7275–7279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17:171–180

    CAS  PubMed  Google Scholar 

  • Niermann H, Amiry-Moghaddam M, Holthoff K, Witte OW, Ottersen OP (2001) A novel role of vasopressin in the brain: modulation of activity-dependent water flux in the neocortex. J Neurosci 21:3045–3051

    CAS  PubMed  Google Scholar 

  • Nilsson C, Lindvall-Axelsson M, Owman C (1992) Neuroendocrine regulatory mechanisms in the choroid plexus-cerebrospinal fluid system. Brain Res Brain Res Rev 17:109–138

    Article  CAS  PubMed  Google Scholar 

  • Pollay M, Curl F (1967) Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit. Am J Physiol 213:1031–1038

    CAS  PubMed  Google Scholar 

  • Rosenberg GA, Kyner WT, Fenstermacher JD, Patlak CS (1986) Effect of vasopressin on ependymal and capillary permeability to tritiated water in cat. Am J Physiol 51:F485–E489

    Google Scholar 

  • Sarnat HB (1992) Regional differentiation of the human fetal ependyma: immunocytochemical markers. J Neuropathol Exp Neurol 51:58–75

    Article  CAS  PubMed  Google Scholar 

  • Sheng M, Sala C (2001) PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 24:1–29

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Ikonen E (2000) How cells handle cholesterol. Science 290:1721–1726

    Article  CAS  PubMed  Google Scholar 

  • Siu MK, Mruk DD, Lee WM, Cheng CY (2003) Adhering junction dynamics in the testis are regulated by an interplay of beta 1-integrin and focal adhesion complex-associated proteins. Endocrinology 144:2141–2163

    Article  CAS  PubMed  Google Scholar 

  • Steinhäuser C, Seifert G, Bedner P (2012) Astrocyte dysfunction in temporal lobe epilepsy: K+ channels and gap junction coupling. Glia 60:1192–1202

    Article  PubMed  Google Scholar 

  • Takai Y, Nakanishi H (2003) Nectin and afadin: novel organizers of intercellular junctions. J Cell Sci 116:17–27

    Article  CAS  PubMed  Google Scholar 

  • Takumi T, Ishii T, Horio Y, Morishige K, Takahashi N, Yamada M, Yamashita T, Kiyama K, Sohmiya K, Nakanishi S, Kurachi Y (1995) A novel ATP-dependent inward rectifier potassium channel expressed predominantly in glial cells. J Biol Chem 270:16339–16346

    Article  CAS  PubMed  Google Scholar 

  • Tanemoto M, Abe T, Ito S (2005) PDZ-binding and di-hydrophobic motifs regulate distribution of Kir4.1 channels in renal cells. J Am Soc Nephrol 16:2608–2614

    Article  CAS  PubMed  Google Scholar 

  • Terris J, Ecelbarger CA, Marples D, Knepper MA, Nielsen S (1995) Distribution of aquaporin-4 water channel expression within rat kidney. Am J Physiol 269:F775–F785

    CAS  PubMed  Google Scholar 

  • Walz W, Hertz L (1983) Functional interactions between neurons and astrocytes. II. Potassium homeostasis at the cellular level. Prog Neurobiol 20:133–183

    Article  CAS  PubMed  Google Scholar 

  • Yakushigawa H, Tokunaga Y, Inanobe A, Kani K, Kurachi Y, Maeda T (1998) A novel junction-like membrane complex in the optic nerve astrocyte of the Japanese macaque with a possible relation to a potassium ion channel. Anat Rec 250:465–474

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Ochalski A, Hertzberg EL, Nagy JI (1990) LM and EM immunolocalization of the gap junctional protein connexin 43 in rat brain. Brain Res 508:313–319

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Kardami E, Nagy JI (1991) Basic fibroblast growth factor in rat brain: localization to glial gap junctions correlates with connexin43 distribution. Brain Res 554:336–343

    Article  CAS  PubMed  Google Scholar 

  • Zahs KR (1998) Heterotypic coupling between glial cells of the mammalian central nervous system. Glia 24:85–96

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akikazu Fujita or Yoshihisa Kurachi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujita, A., Inanobe, A., Hibino, H. et al. Clustering of Kir4.1 at specialized compartments of the lateral membrane in ependymal cells of rat brain. Cell Tissue Res 359, 627–634 (2015). https://doi.org/10.1007/s00441-014-2030-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-2030-6

Keywords

Navigation