Skip to main content

Advertisement

Log in

Immunohistochemical and gene expression analysis of stem-cell-associated markers in rat dental pulp

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Stem cells in the dental pulp comprise rare populations lacking definitive cytological markers and thus are poorly characterized in vivo, especially in rat species. To gain more insight into the phenotypical characteristics and tissue distribution of these cells, we examined the distribution of stem-cell-associated marker-expressing cells and mRNA expression levels of stem-cell-associated markers in the rat molar. CD146-positive cells co-expressing microtubule-associated protein 1B were counted following double-labeling immunoperoxidase staining and their density in the coronal pulp, root pulp and periodontal ligament was compared. Moreover, mRNA expression levels of CD146, CD105, CD166 and secreted phosphoprotein 1 (SPP1; also known as osteopontin, a negative regulatory element of the stem cell niche) were analyzed in these regions by using real time polymerase chain reaction. The double-positive cells could be clearly distinguished from non-stem cells single-stained by either of the markers and showed a significantly higher density in the coronal pulp compared with the other regions (P<0.05). Moreover, mRNA expression levels of CD146, CD105 and CD166 were significantly higher in the coronal pulp than in the other regions (P<0.05). On the other hand, SPP1 mRNA expression was significantly higher in the periodontal ligament than in the pulp. Thus, the density of stem-cell-associated marker-expressing cells and stem-cell-associated gene expression levels are higher in the coronal pulp than in the root pulp and periodontal ligament, suggesting that the coronal pulp harbors more stem cells than the other regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alsalameh S, Amin R, Gemba T, Lotz M (2004) Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum 50:1522–1532

    Article  PubMed  Google Scholar 

  • Baksh D, Song L, Tuan RS (2004) Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 8:301–316

    Article  PubMed  CAS  Google Scholar 

  • Balic A, Aguila HL, Caimano MJ, Francone VP, Mina M (2010) Characterization of stem and progenitor cells in the dental pulp of erupted and unerupted murine molars. Bone 46:1639–1651

    Article  PubMed  Google Scholar 

  • Bardin N, Anfosso F, Massé JM, Cramer E, Sabatier F, Le Bivic A, Sampol J, Dignat-George F (2001) Identification of CD146 as a component of the endothelial junction involved in the control of cell-cell cohesion. Blood 98:3677–3684

    Article  PubMed  CAS  Google Scholar 

  • Bleicher F, Couble ML, Buchaille R, Farges JC, Magloire H (2001) New genes involved in odontoblast differentiation. Adv Dent Res 15:30–33

    Article  PubMed  CAS  Google Scholar 

  • Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  PubMed  CAS  Google Scholar 

  • Demarco FF, Conde MC, Cavalcanti BN, Casagrande L, Sakai VT, Nör JE (2011) Dental pulp tissue engineering. Braz Dent J 22:3–13

    Article  PubMed  Google Scholar 

  • Fonsatti E, Del Vecchio L, Altomonte M, Sigalotti L, Nicotra MR, Coral S, Natali PG, Maio M (2001) Endoglin: an accessory component of the TGF-beta-binding receptor-complex with diagnostic, prognostic, and bioimmunotherapeutic potential in human malignancies. J Cell Physiol 188:1–7

    Article  PubMed  CAS  Google Scholar 

  • Fortier LA (2005) Stem cells: classifications, controversies, and clinical applications. Vet Surg 34:415–423

    Article  PubMed  Google Scholar 

  • Friedenstein AJ (1976) Precursor cells of mechanocytes. Int Rev Cytol 47:327–359

    Article  PubMed  CAS  Google Scholar 

  • Gardner RL (2002) Stem cells: potency, plasticity and public perception. J Anat 200:277–282

    Article  PubMed  CAS  Google Scholar 

  • Gonçalves PF, Lima LL, Sallum EA, Casati MZ, Nociti FH Jr (2008) Root cementum may modulate gene expression during periodontal regeneration: a preliminary study in humans. J Periodontol 79:323–331

    Article  PubMed  Google Scholar 

  • Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81:531–535

    Article  PubMed  CAS  Google Scholar 

  • Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A, Simmons PJ (2003) Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116:1827–1835

    Article  PubMed  CAS  Google Scholar 

  • Halpain S, Dehmelt L (2006) The MAP1 family of microtubule-associated proteins. Genome Biol 7:224

    Article  PubMed  Google Scholar 

  • Huang GT, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88:792–806

    Article  PubMed  CAS  Google Scholar 

  • Ivanovski S, Gronthos S, Shi S, Bartold PM (2006) Stem cells in the periodontal ligament. Oral Dis 12:358–363

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Okiji T, Kaneko R, Suda H (2008a) Characteristics of resident dendritic cells in various regions of rat periodontal ligament. Cell Tissue Res 331:413–421

    Article  PubMed  Google Scholar 

  • Kaneko T, Okiji T, Zhao L, Esgeurra R, Suda H (2008b) Heterogeneity of dendritic cells in rat apical periodontitis. Cell Tissue Res 331:617–623

    Article  PubMed  CAS  Google Scholar 

  • Kolf CM, Cho E, Tuan RS (2007) Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther 9:204

    Article  PubMed  Google Scholar 

  • Lehmann JM, Riethmüller G, Johnson JP (1989) MUC18, a marker of tumor progression in human melanoma, shows sequence similarity to the neural cell adhesion molecules of the immunoglobulin superfamily. Proc Natl Acad Sci USA 86:9891–9895

    Article  PubMed  CAS  Google Scholar 

  • Mareschi K, Biasin E, Piacibello W, Aglietta M, Madon E, Fagioli F (2001) Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood. Haematologica 86:1099–1100

    PubMed  CAS  Google Scholar 

  • Maurin JC, Couble ML, Staquet MJ, Carrouel F, About I, Avila J, Magloire H, Bleicher F (2009) Microtubule-associated protein 1b, a neuronal marker involved in odontoblast differentiation. J Endod 35:992–996

    Article  PubMed  Google Scholar 

  • Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003)SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA100:5807–5812

    Article  PubMed  CAS  Google Scholar 

  • Montzka K, Lassonczyk N, Tschöke B, Neuss S, Führmann T, Franzen R, Smeets R, Brook GA, Wöltje M (2009) Neural differentiation potential of human bone marrow-derived mesenchymal stromal cells: misleading marker gene expression. BMC Neurosci 10:16

    Article  PubMed  Google Scholar 

  • Mrozik K, Gronthos S, Shi S, Bartold PM (2010) A method to isolate, purify, and characterize human periodontal ligament stem cells. Methods Mol Biol 666:269–284

    Article  PubMed  CAS  Google Scholar 

  • Nakashima M, Akamine A (2005) The application of tissue engineering to regeneration of pulp and dentin in endodontics. J Endod 31:711–718

    Article  PubMed  Google Scholar 

  • Nor JE (2006) Tooth regeneration in operative dentistry. Oper Dent 31:633–642

    Article  PubMed  Google Scholar 

  • Pedrotti B, Islam K (1995) Microtubule associated protein 1B (MAP1B) promotes efficient tubulin polymerisation in vitro. FEBS Lett 371:29–31

    Article  PubMed  CAS  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  • Ponnaiyan D, Bhat KM, Bhat GS (2012) Comparison of immuno-phenotypes of stem cells from human dental pulp and periodontal ligament. Int J Immunopathol Pharmacol 25:127–134

    PubMed  CAS  Google Scholar 

  • Porada CD, Zanjani ED, Almeida-Porad G (2006) Adult mesenchymal stem cells: a pluripotent population with multiple applications. Curr Stem Cell Res Ther 1:365–369

    Article  PubMed  CAS  Google Scholar 

  • Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    Article  PubMed  CAS  Google Scholar 

  • Riederer B, Cohen R, Matus A (1986) MAP5: a novel brain microtubule-associated protein under strong developmental regulation. J Neurocytol 15:763–775

    Article  PubMed  CAS  Google Scholar 

  • Schroeder HE (1986) Handbook of microscopic anatomy. The periodontium, vol 5. Springer, Berlin, pp 12–323

    Google Scholar 

  • Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155

    Article  PubMed  CAS  Google Scholar 

  • Sers C, Kirsch K, Rothbächer U, Riethmüller G, Johnson JP (1993) Genomic organization of the melanoma-associated glycoprotein MUC18: implications for the evolution of the immunoglobulin domains. Proc Natl Acad Sci USA 90:8514–8518

    Article  PubMed  CAS  Google Scholar 

  • Shih IM (1999) The role of CD146 (Mel-CAM) in biology and pathology. J Pathol 189:4–11

    Article  PubMed  CAS  Google Scholar 

  • Sodek J, Ganss B, McKee MD (2000) Osteopontin. Crit Rev Oral Biol Med 11:279–303

    Article  PubMed  CAS  Google Scholar 

  • Stier S, Ko Y, Forkert R, Lutz C, Neuhaus T, Grünewald E, Cheng T, Dombkowski D, Calvi LM, Rittling SR, Scadden DT (2005) Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med 201:1781–1791

    Article  PubMed  CAS  Google Scholar 

  • Swart GW (2002) Activated leukocyte cell adhesion molecule (CD166/ALCAM): developmental and mechanistic aspects of cell clustering and cell migration. Eur J Cell Biol 81:313–321

    Article  PubMed  CAS  Google Scholar 

  • Valenti MT, Dalle Carbonare L, Donatelli L, Bertoldo F, Zanatta M, Lo Cascio V (2008) Gene expression analysis in osteoblastic differentiation from peripheral blood mesenchymal stem cells. Bone 43:1084–1092

    Article  PubMed  CAS  Google Scholar 

  • Van der Kooy D, Weiss S (2000) Why stem cells? Science 287:1439–1441

    Article  PubMed  Google Scholar 

  • Villar CC, Cochran DL (2010) Regeneration of periodontal tissues: guided tissue regeneration. Dent Clin North Am 54:73–92

    Article  PubMed  Google Scholar 

  • Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364–370

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Wang S, Liu Z, Wu MH, McAlpine B, Ansel J, Armstrong C, Wu G (2001) Isolation and characterization of mouse MUC18 cDNA gene, and correlation of MUC18 expression in mouse melanoma cell lines with metastatic ability. Gene 265:133–145

    Article  PubMed  CAS  Google Scholar 

  • Zuk PA (2001) Stem cell research has only just begun. Science 293:211–212

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoatsu Kaneko.

Additional information

This study was supported by Grants-in-Aid for Scientific Research (no. 20390483 to T.O. and no. 24592862 to T.K.) from the Japan Society for the Promotion of Sciences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaneko, T., Arayatrakoollikit, U., Yamanaka, Y. et al. Immunohistochemical and gene expression analysis of stem-cell-associated markers in rat dental pulp. Cell Tissue Res 351, 425–432 (2013). https://doi.org/10.1007/s00441-012-1539-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1539-9

Keywords

Navigation