Skip to main content
Log in

Angiopoietin-like gene expression in the mouse uterus during implantation and in response to steroids

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The purpose of this work was to determine if and where Angiopoietin-like genes are expressed in the mouse uterus during the implantation period of pregnancy and to determine if uterine expression of such genes is controlled by estrogen or progesterone. We found that all six known murine angiopoietin-like genes were expressed in the mouse uterus during implantation. The expression of four genes was controlled by either estrogen or progesterone. Only the levels of angiopoietin-like 4 (Angptl4) mRNA dramatically increased in implantation segments of the uterus during decidualization and was conceptus-independent. Due to this increased expression and the fact that angiopoietin-like 4 protein plays a role in lipid metabolism and angiogenesis in other tissues, only the expression of Angptl4 was further examined in the uterus and developing placenta. Angptl4 mRNA was localized to subpopulations of the endometrial stromal fibroblast and endothelial cell populations during decidualization. It was also localized to the ectoplacental cone, trophoblast giant cells and parietal endoderm of the conceptus at this time. By mid-pregnancy, Angptl4 mRNA was localized mainly to the mesometrial lymphoid aggregate region plus mesometrial endothelial cells of the uterus, as well as in various cell types of the conceptus. Additional work showed that Angptl4 expression increases in mouse endometrial stromal cells as they undergo decidualization in vitro. As in other cell types, the expression of Angptl4 in endometrial stromal cells was increased in response to an agonist of the peroxisome proliferator activated receptors. Taken together, the results of this work support the hypothesis that locally expressed Angptl4 might play a role in local uterine/placental lipid metabolism and vascular changes during implantation and thus provide a basis for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrahamsohn PA, Zorn TM (1993) Implantation and decidualization in rodents. J Exp Zool 266:603–628

    Article  PubMed  CAS  Google Scholar 

  • Ashkar AA, Croy BA (1999) Interferon-gamma contributes to the normalcy of murine pregnancy. Biol Reprod 61:493–502

    Article  PubMed  CAS  Google Scholar 

  • Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101:15718–15723

    Article  PubMed  Google Scholar 

  • Bany BM, Cross JC (2006) Post-implantation mouse conceptuses produce paracrine signals that regulate the uterine endometrium undergoing decidualization. Dev Biol 294:445–456

    Article  PubMed  CAS  Google Scholar 

  • Bany BM, Harvey MB, Schultz GA (2000) Expression of matrix metalloproteinases 2 and 9 in the mouse uterus during implantation and oil-induced decidualization. J Reprod Fertil 120:125–134

    Article  PubMed  CAS  Google Scholar 

  • Barber EM, Pollard JW (2003) The uterine NK cell population requires IL-15 but these cells are not required for pregnancy nor the resolution of a Listeria monocytogenes infection. J Immunol 171:37–46

    PubMed  CAS  Google Scholar 

  • Belanger AJ, Lu H, Date T, Liu LX, Vincent KA, Akita GY, Cheng SH, Gregory RJ, Jiang C (2002) Hypoxia up-regulates expression of peroxisome proliferator-activated receptor gamma angiopoietin-related gene (PGAR) in cardiomyocytes: role of hypoxia inducible factor 1alpha. J Mol Cell Cardiol 34:765–774

    Article  PubMed  CAS  Google Scholar 

  • Blois SM, Klapp BF, Barrientos G (2011) Decidualization and angiogenesis in early pregnancy: unravelling the functions of DC and NK cells. J Reprod Immunol 88:86–92

    Article  PubMed  CAS  Google Scholar 

  • Camenisch G, Pisabarro MT, Sherman D, Kowalski J, Nagel M, Hass P, Xie MH, Gurney A, Bodary S, Liang XH, Clark K, Beresini M, Ferrara N, Gerber HP (2002) ANGPTL3 stimulates endothelial cell adhesion and migration via integrin alpha vbeta 3 and induces blood vessel formation in vivo. J Biol Chem 277:17281–17290

    Article  PubMed  CAS  Google Scholar 

  • Cazes A, Galaup A, Chomel C, Bignon M, Brechot N, Le Jan S, Weber H, Corvol P, Muller L, Germain S, Monnot C (2006) Extracellular matrix-bound angiopoietin-like 4 inhibits endothelial cell adhesion, migration, and sprouting and alters actin cytoskeleton. Circ Res 99:1207–1215

    Article  PubMed  CAS  Google Scholar 

  • Chomel C, Cazes A, Faye C, Bignon M, Gomez E, Ardidie-Robouant C, Barret A, Ricard-Blum S, Muller L, Germain S, Monnot C (2009) Interaction of the coiled-coil domain with glycosaminoglycans protects angiopoietin-like 4 from proteolysis and regulates its antiangiogenic activity. FASEB J 23:940–949

    Article  PubMed  CAS  Google Scholar 

  • Comes N, Buie LK, Borras T (2011) Evidence for a role of angiopoietin-like 7 (ANGPTL7) in extracellular matrix formation of the human trabecular meshwork: implications for glaucoma. Genes Cells 16:243–259

    Article  PubMed  CAS  Google Scholar 

  • Croy BA, He H, Esadeg S, Wei Q, McCartney D, Zhang J, Borzychowski A, Ashkar AA, Black GP, Evans SS, Chantakru S, van den Heuvel M, Paffaro VA Jr, Yamada AT (2003) Uterine natural killer cells: insights into their cellular and molecular biology from mouse modelling. Reproduction 126:149–160

    Article  PubMed  CAS  Google Scholar 

  • Dhanabal M, LaRochelle WJ, Jeffers M, Herrmann J, Rastelli L, McDonald WF, Chillakuru RA, Yang M, Boldog FL, Padigaru M, McQueeney KD, Wu F, Minskoff SA, Shimkets RA, Lichenstein HS (2002) Angioarrestin: an antiangiogenic protein with tumor-inhibiting properties. Cancer Res 62:3834–3841

    PubMed  CAS  Google Scholar 

  • Ding NZ, Ma XH, Diao HL, Xu LB, Yang ZM (2003a) Differential expression of peroxisome proliferator-activated receptor delta at implantation sites and in decidual cells of rat uterus. Reproduction 125:817–825

    Article  PubMed  CAS  Google Scholar 

  • Ding NZ, Teng CB, Ma H, Ni H, Ma XH, Xu LB, Yang ZM (2003b) Peroxisome proliferator-activated receptor delta expression and regulation in mouse uterus during embryo implantation and decidualization. Mol Reprod Dev 66:218–224

    Article  PubMed  CAS  Google Scholar 

  • Dunn CL, Kelly RW, Critchley HO (2003) Decidualization of the human endometrial stromal cell: an enigmatic transformation. Reprod Biomed Online 7:151–161

    Article  PubMed  Google Scholar 

  • Eckstrum K, Bany BM (2011) Tumor necrosis factor receptor subfamily 9 (Tnfrsf9) gene is expressed in distinct cell populations in mouse uterus and conceptus during implantation period of pregnancy. Cell Tissue Res 344:567–576

    Article  PubMed  CAS  Google Scholar 

  • Gellersen B, Brosens IA, Brosens JJ (2007) Decidualization of the human endometrium: mechanisms, functions, and clinical perspectives. Semin Reprod Med 25:445–453

    Article  PubMed  CAS  Google Scholar 

  • Goldberg IJ, Merkel M (2001) Lipoprotein lipase: physiology, biochemistry, and molecular biology. Front Biosci 6:D388–405

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Muniesa P, de Oliveira C, Perez de Heredia F, Thompson MP, Trayhurn P (2011) Fatty Acids and Hypoxia Stimulate the Expression and Secretion of the Adipokine ANGPTL4 (Angiopoietin-Like Protein 4/ Fasting-Induced Adipose Factor) by Human Adipocytes. J Nutrigenet Nutrigenomics 4:146–153

    Article  PubMed  CAS  Google Scholar 

  • Gray JM, Greenwood MR (1983) Uterine and adipose lipoprotein lipase activity in hormone-treated and pregnant rats. Am J Physiol 245:E132–137

    PubMed  CAS  Google Scholar 

  • Herington JL, Bany BM (2007a) The conceptus increases secreted phosphoprotein 1 gene expression in the mouse uterus during the progression of decidualization mainly due to its effects on uterine natural killer cells. Reproduction 133:1213–1221

    Article  PubMed  CAS  Google Scholar 

  • Herington JL, Bany BM (2007b) Effect of the conceptus on uterine natural killer cell numbers and function in the mouse uterus during decidualization. Biol Reprod 76:579–588

    Article  PubMed  CAS  Google Scholar 

  • Herington JL, Bany BM (2009) Do molecular signals from the conceptus influence endometrium decidualization in rodents? J Exp Zool B Mol Dev Evol 312:797–816

    Article  PubMed  Google Scholar 

  • Herington JL, Underwood T, McConaha M, Bany BM (2009) Paracrine signals from the mouse conceptus are not required for the normal progression of decidualization. Endocrinology 150:4404–4413

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Jham BC, Ma T, Friedman ER, Ferreira L, Wright JM, Accurso B, Allen CM, Basile JR, Montaner S (2011) Angiopoietin-like 4: a novel molecular hallmark in oral Kaposi’s sarcoma. Oral Oncol 47:371–375

    Article  PubMed  CAS  Google Scholar 

  • Ito Y, Oike Y, Yasunaga K, Hamada K, Miyata K, Matsumoto S, Sugano S, Tanihara H, Masuho Y, Suda T (2003) Inhibition of angiogenesis and vascular leakiness by angiopoietin-related protein 4. Cancer Res 63:6651–6657

    PubMed  CAS  Google Scholar 

  • Johnsen GM, Basak S, Weedon-Fekjaer MS, Staff AC, Duttaroy AK (2011) Docosahexaenoic acid stimulates tube formation in first trimester trophoblast cells, HTR8/SVneo. Placenta 32:626–632

    Article  PubMed  CAS  Google Scholar 

  • Kadomatsu T, Tabata M, Oike Y (2011) Angiopoietin-like proteins: emerging targets for treatment of obesity and related metabolic diseases. FEBS J 278:559–564

    Article  PubMed  CAS  Google Scholar 

  • Katoh Y, Katoh M (2006) Comparative integromics on Angiopoietin family members. Int J Mol Med 17:1145–1149

    PubMed  CAS  Google Scholar 

  • Kikuchi R, Tsuda H, Kozaki K, Kanai Y, Kasamatsu T, Sengoku K, Hirohashi S, Inazawa J, Imoto I (2008) Frequent inactivation of a putative tumor suppressor, angiopoietin-like protein 2, in ovarian cancer. Cancer Res 68:5067–5075

    Article  PubMed  CAS  Google Scholar 

  • Kitazawa M, Nagano M, Masumoto KH, Shigeyoshi Y, Natsume T, Hashimoto S (2011) Angiopoietin-like 2, a circadian gene, improves type 2 diabetes through potentiation of insulin sensitivity in mice adipocytes. Endocrinology 152:2558–2567

    Article  PubMed  CAS  Google Scholar 

  • Lai DM, Tu YK, Hsieh YH, Hsu WM, Lee CC, Cheng WC, Hsieh FJ, Li H (2007) Angiopoietin-like protein 1 expression is related to intermuscular connective tissue and cartilage development. Dev Dyn 236:2643–2652

    Article  PubMed  CAS  Google Scholar 

  • Le Jan S, Amy C, Cazes A, Monnot C, Lamande N, Favier J, Philippe J, Sibony M, Gasc JM, Corvol P, Germain S (2003) Angiopoietin-like 4 is a proangiogenic factor produced during ischemia and in conventional renal cell carcinoma. Am J Pathol 162:1521–1528

    Article  PubMed  Google Scholar 

  • Lei X, Shi F, Basu D, Huq A, Routhier S, Day R, Jin W (2011) Proteolytic processing of angiopoietin-like protein 4 by proprotein convertases modulates its inhibitory effects on lipoprotein lipase activity. J Biol Chem 286:15747–15756

    Article  PubMed  CAS  Google Scholar 

  • Lu B, Moser A, Shigenaga JK, Grunfeld C, Feingold KR (2010) The acute phase response stimulates the expression of angiopoietin like protein 4. Biochem Biophys Res Commun 391:1737–1741

    Article  PubMed  CAS  Google Scholar 

  • Mandard S, Zandbergen F, Tan NS, Escher P, Patsouris D, Koenig W, Kleemann R, Bakker A, Veenman F, Wahli W, Muller M, Kersten S (2004) The direct peroxisome proliferator-activated receptor target fasting-induced adipose factor (FIAF/PGAR/ANGPTL4) is present in blood plasma as a truncated protein that is increased by fenofibrate treatment. J Biol Chem 279:34411–34420

    Article  PubMed  CAS  Google Scholar 

  • Mandard S, Zandbergen F, van Straten E, Wahli W, Kuipers F, Muller M, Kersten S (2006) The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. J Biol Chem 281:934–944

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto H, Ma WG, Daikoku T, Zhao X, Paria BC, Das SK, Trzaskos JM, Dey SK (2002) Cyclooxygenase-2 differentially directs uterine angiogenesis during implantation in mice. J Biol Chem 277:29260–29267

    Article  PubMed  CAS  Google Scholar 

  • McConaha ME, Eckstrum K, An J, Steinle JJ, Bany BM (2011) Microarray assessment of the influence of the conceptus on gene expression in the mouse uterus during decidualization. Reproduction 141:511–527

    Article  PubMed  CAS  Google Scholar 

  • Nicoll A, Lewis B (1980) Evaluation of the roles of lipoprotein lipase and hepatic lipase in lipoprotein metabolism: in vivo and in vitro studies in man. Eur J Clin Invest 10:487–495

    Article  PubMed  CAS  Google Scholar 

  • Nie GY, Li Y, Minoura H, Findlay JK, Salamonsen LA (2003) Specific and transient up-regulation of proprotein convertase 6 at the site of embryo implantation and identification of a unique transcript in mouse uterus during early pregnancy. Biol Reprod 68:439–447

    Article  PubMed  CAS  Google Scholar 

  • Nie G, Li Y, Wang M, Liu YX, Findlay JK, Salamonsen LA (2005) Inhibiting uterine PC6 blocks embryo implantation: an obligatory role for a proprotein convertase in fertility. Biol Reprod 72:1029–1036

    Article  PubMed  CAS  Google Scholar 

  • Nishimura K, Yamauchi N, Chowdhury VS, Torii M, Hattori MA, Kaneto M (2011) Expression of peroxisome proliferator-activated receptor isoforms in the rat uterus during early pregnancy. Cell Tissue Res 345:275–284

    Article  PubMed  CAS  Google Scholar 

  • Oike Y, Akao M, Yasunaga K, Yamauchi T, Morisada T, Ito Y, Urano T, Kimura Y, Kubota Y, Maekawa H, Miyamoto T, Miyata K, Matsumoto S, Sakai J, Nakagata N, Takeya M, Koseki H, Ogawa Y, Kadowaki T, Suda T (2005) Angiopoietin-related growth factor antagonizes obesity and insulin resistance. Nat Med 11:400–408

    Article  PubMed  CAS  Google Scholar 

  • Parast MM, Yu H, Ciric A, Salata MW, Davis V, Milstone DS (2009) PPARgamma regulates trophoblast proliferation and promotes labyrinthine trilineage differentiation. PLoS One 4:e8055

    Article  PubMed  Google Scholar 

  • Shan L, Yu XC, Liu Z, Hu Y, Sturgis LT, Miranda ML, Liu Q (2009) The angiopoietin-like proteins ANGPTL3 and ANGPTL4 inhibit lipoprotein lipase activity through distinct mechanisms. J Biol Chem 284:1419–1424

    Article  PubMed  CAS  Google Scholar 

  • Simmons DG, Cross JC (2005) Determinants of trophoblast lineage and cell subtype specification in the mouse placenta. Dev Biol 284:12–24

    Article  PubMed  CAS  Google Scholar 

  • Simmons DG, Rawn S, Davies A, Hughes M, Cross JC (2008) Spatial and temporal expression of the 23 murine Prolactin/Placental Lactogen-related genes is not associated with their position in the locus. BMC Genomics 9:352

    Article  PubMed  Google Scholar 

  • Staiger H, Haas C, Machann J, Werner R, Weisser M, Schick F, Machicao F, Stefan N, Fritsche A, Haring HU (2009) Muscle-derived angiopoietin-like protein 4 is induced by fatty acids via peroxisome proliferator-activated receptor (PPAR)-delta and is of metabolic relevance in humans. Diabetes 58:579–589

    Article  PubMed  CAS  Google Scholar 

  • Tang M, Mikhailik A, Pauli I, Giudice LC, Fazelabas AT, Tulac S, Carson DD, Kaufman DG, Barbier C, Creemers JW, Tabibzadeh S (2005) Decidual differentiation of stromal cells promotes Proprotein Convertase 5/6 expression and lefty processing. Endocrinology 146:5313–5320

    Article  PubMed  CAS  Google Scholar 

  • Wieser F, Waite L, Depoix C, Taylor RN (2008) PPAR action in human placental development and pregnancy and its complications. PPAR Res 2008:527048

    Article  PubMed  Google Scholar 

  • Wong BS, Liu S, Schultz GA, Rancourt DE (2002) Subtilisin proprotein convertase-6 expression in the mouse uterus during implantation and artificially induced decidualization. Mol Reprod Dev 61:453–459

    Article  PubMed  CAS  Google Scholar 

  • Xu A, Lam MC, Chan KW, Wang Y, Zhang J, Hoo RL, Xu JY, Chen B, Chow WS, Tso AW, Lam KS (2005) Angiopoietin-like protein 4 decreases blood glucose and improves glucose tolerance but induces hyperlipidemia and hepatic steatosis in mice. Proc Natl Acad Sci USA 102:6086–6091

    Article  PubMed  CAS  Google Scholar 

  • Yang YH, Wang Y, Lam KS, Yau MH, Cheng KK, Zhang J, Zhu W, Wu D, Xu A (2008) Suppression of the Raf/MEK/ERK signaling cascade and inhibition of angiogenesis by the carboxyl terminus of angiopoietin-like protein 4. Arterioscler Thromb Vasc Biol 28:835–840

    Article  PubMed  CAS  Google Scholar 

  • Yoon JC, Chickering TW, Rosen ED, Dussault B, Qin Y, Soukas A, Friedman JM, Holmes WE, Spiegelman BM (2000) Peroxisome proliferator-activated receptor gamma target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Mol Cell Biol 20:5343–5349

    Article  PubMed  CAS  Google Scholar 

  • Zeng L, Dai J, Ying K, Zhao E, Jin W, Ye Y, Xu J, Xie Y, Mao Y (2003) Identification of a novel human angiopoietin-like gene expressed mainly in heart. J Hum Genet 48:159–162

    Article  PubMed  CAS  Google Scholar 

  • Zhu P, Tan MJ, Huang RL, Tan CK, Chong HC, Pal M, Lam CR, Boukamp P, Pan JY, Tan SH, Kersten S, Li HY, Ding JL, Tan NS (2011) Angiopoietin-like 4 protein elevates the prosurvival intracellular O2(-):H2O2 ratio and confers anoikis resistance to tumors. Cancer Cell 19:401–415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Southern Illinois University School of Medicine and a NIH–Eunice Kennedy Shriver National Institute of Child Health and Human Development (HD049010) grant (to B.B.). Personnel support from Southern Illinois University was received in the form of Undergraduate Research Assistantships (to C.S.). The authors gratefully acknowledge Sheila Scillufo and Jennifer Herington for providing technical assistance in animal husbandry and qRT-PCR work in this study, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent M. Bany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, C.A., van Huyen, D. & Bany, B.M. Angiopoietin-like gene expression in the mouse uterus during implantation and in response to steroids. Cell Tissue Res 348, 199–211 (2012). https://doi.org/10.1007/s00441-012-1337-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1337-4

Keywords

Navigation