Skip to main content

Advertisement

Log in

Fabrication and evaluation of biomimetic-synthetic nanofibrous composites for soft tissue regeneration

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Electrospun scaffolds hold promise for the regeneration of dense connective tissues, given their nanoscale topographies, provision of directional cues for infiltrating cells and versatile composition. Synthetic slow-degrading scaffolds provide long-term mechanical support and nanoscale instructional cues; however, these scaffolds suffer from a poor infiltration rate. Alternatively, nanofibrous constructs formed from natural biomimetic materials (such as collagen) rapidly infiltrate but provide little mechanical support. To take advantage of the positive features of these constructs, we have developed a composite scaffold consisting in both a biomimetic fiber fraction (i.e., Type I collagen nanofibers) together with a traditional synthetic (i.e., poly-[ε-caprolactone], PCL) fiber fraction. We hypothesize that inclusion of biomimetic elements will improve initial cell adhesion and eventual scaffold infiltration, whereas the synthetic elements will provide controlled and long-term mechanical support. We have developed a method of forming and crosslinking collagen nanofibers by using the natural crosslinking agent genipin (GP). Further, we have formed composites from collagen and PCL and evaluated the long-term performance of these scaffolds when seeded with mesenchymal stem cells. Our results demonstrate that GP crosslinking is cytocompatible and generates stable nanofibrous type I collagen constructs. Composites with varying fractions of the biomimetic and synthetic fiber families are formed and retain their collagen fiber fractions during in vitro culture. However, at the maximum collagen fiber fractions (20%), cell ingress is limited compared with pure PCL scaffolds. These results provide a new foundation for the development and optimization of biomimetic/synthetic nanofibrous composites for in vivo tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ayres C, Bowlin GL, Henderson SC, Taylor L, Shultz J, Alexander J, Telemeco TA, Simpson DG (2006) Modulation of anisotropy in electrospun tissue-engineering scaffolds: analysis of fiber alignment by the fast Fourier transform. Biomaterials 27:5524–5534

    Article  PubMed  CAS  Google Scholar 

  • Baker BM, Mauck RL (2007) The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials 28:1967–1977

    Article  PubMed  CAS  Google Scholar 

  • Baker BM, Gee AO, Metter RB, Nathan AS, Marklein RA, Burdick JA, Mauck RL (2008) The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials 29:2348–2358

    Article  PubMed  CAS  Google Scholar 

  • Baker BM, Handorf AM, Ionescu LC, Li WJ, Mauck RL (2009a) New directions in nanofibrous scaffolds for soft tissue engineering and regeneration. Expert Rev Med Devices 6:515–532

    Article  PubMed  CAS  Google Scholar 

  • Baker BM, Nathan AS, Huffman GR, Mauck RL (2009b) Tissue engineering with meniscus cells derived from surgical debris. Osteoarthritis Cartilage 17:336–345

    Article  PubMed  CAS  Google Scholar 

  • Baker BM, Nerurkar NL, Burdick JA, Elliott DM, Mauck RL (2009c) Fabrication and modeling of dynamic multipolymer nanofibrous scaffolds. J Biomech Eng 131:101012

    Article  PubMed  Google Scholar 

  • Baker BM, Nathan AS, Gee AO, Mauck RL (2010) The influence of an aligned nanofibrous topography on human mesenchymal stem cell fibrochondrogenesis. Biomaterials 31:6190–6200

    Article  PubMed  CAS  Google Scholar 

  • Bank RA, Bayliss MT, Lafeber FP, Maroudas A, Tekoppele JM (1998) Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. The age-related increase in non-enzymatic glycation affects biomechanical properties of cartilage. Biochem J 330:345–351

    PubMed  CAS  Google Scholar 

  • Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL (2007a) Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 59:1413–1433

    Article  PubMed  CAS  Google Scholar 

  • Barnes CP, Pemble CW, Brand DD, Simpson DG, Bowlin GL (2007b) Cross-linking electrospun type II collagen tissue engineering scaffolds with carbodiimide in ethanol. Tissue Eng 13:1593–1605

    Article  PubMed  CAS  Google Scholar 

  • Birk DE, Zycband E (1994) Assembly of the tendon extracellular matrix during development. J Anat 184:457–463

    PubMed  Google Scholar 

  • Birk DE, Zycband EI, Winkelmann DA, Trelstad RL (1989) Collagen fibrillogenesis in situ: fibril segments are intermediates in matrix assembly. Proc Natl Acad Sci USA 86:4549–4553

    Article  PubMed  CAS  Google Scholar 

  • Birk DE, Nurminskaya MV, Zycband EI (1995) Collagen fibrillogenesis in situ: fibril segments undergo post-depositional modifications resulting in linear and lateral growth during matrix development. Dev Dyn 202:229–243

    Article  PubMed  CAS  Google Scholar 

  • Bursac P, Arnoczky S, York A (2009a) Dynamic compressive behavior of human meniscus correlates with its extra-cellular matrix composition. Biorheology 46:227–237

    PubMed  CAS  Google Scholar 

  • Bursac P, York A, Kuznia P, Brown LM, Arnoczky SP (2009b) Influence of donor age on the biomechanical and biochemical properties of human meniscal allografts. Am J Sports Med 37:884–889

    Article  PubMed  Google Scholar 

  • Buschmann MD, Gluzband YA, Grodzinsky AJ, Kimura JH, Hunziker EB (1992) Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. J Orthop Res 10:745–758

    Article  PubMed  CAS  Google Scholar 

  • Buttafoco L, Kolkman NG, Engbers-Buijtenhuijs P, Poot AA, Dijkstra PJ, Vermes I, Feijen J (2006) Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials 27:724–734

    Article  PubMed  CAS  Google Scholar 

  • Casper CL, Yamaguchi N, Kiick KL, Rabolt JF (2005) Functionalizing electrospun fibers with biologically relevant macromolecules. Biomacromolecules 6:1998–2007

    Article  PubMed  CAS  Google Scholar 

  • Casper CL, Yang W, Farach-Carson MC, Rabolt JF (2007) Coating electrospun collagen and gelatin fibers with perlecan domain I for increased growth factor binding. Biomacromolecules 8:1116–1123

    Article  PubMed  CAS  Google Scholar 

  • Courtney T, Sacks MS, Stankus J, Guan J, Wagner WR (2006) Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials 27:3631–3638

    PubMed  CAS  Google Scholar 

  • Dalton PD, Lleixa Calvet J, Mourran A, Klee D, Moller M (2006) Melt electrospinning of poly-(ethylene glycol-block-epsilon-caprolactone). Biotechnol J 1:998–1006

    Article  PubMed  CAS  Google Scholar 

  • Dalton PD, Woodfield T, Hutmacher DW (2009) Snapshot: polymer scaffolds for tissue engineering. Biomaterials 30:701–702

    Article  PubMed  Google Scholar 

  • Ding B, Kimura E, Sato T, Fujita S, Shiratori S (2004) Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning. Polymer 45:1895–1902

    Article  CAS  Google Scholar 

  • Ekaputra AK, Prestwich GD, Cool SM, Hutmacher DW (2008) Combining electrospun scaffolds with electrosprayed hydrogels leads to three-dimensional cellularization of hybrid constructs. Biomacromolecules 9:2097–2103

    Article  PubMed  CAS  Google Scholar 

  • Ekaputra AK, Prestwich GD, Cool SM, Hutmacher DW (2011) The three-dimensional vascularization of growth factor-releasing hybrid scaffold of poly (varepsilon-caprolactone)/collagen fibers and hyaluronic acid hydrogel. Biomaterials 32:8108-8117

    Article  PubMed  CAS  Google Scholar 

  • Farndale RW, Buttle DJ, Barrett AJ (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883:173–177

    Article  PubMed  CAS  Google Scholar 

  • Huang AH, Stein A, Tuan RS, Mauck RL (2009) Transient exposure to transforming growth factor beta 3 improves the mechanical properties of mesenchymal stem cell-laden cartilage constructs in a density-dependent manner. Tissue Eng Part A 15:3461–3472

    Article  PubMed  CAS  Google Scholar 

  • Hutmacher DW, Dalton PD (2011) Melt electrospinning. Chem Asian J 6:44–56

    Article  PubMed  CAS  Google Scholar 

  • Ionescu LC, Lee GC, Sennett BJ, Burdick JA, Mauck RL (2010) An anisotropic nanofiber/microsphere composite with controlled release of biomolecules for fibrous tissue engineering. Biomaterials 31:4113–4120

    Article  PubMed  CAS  Google Scholar 

  • Kidoaki S, Kwon IK, Matsuda T (2005) Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials 26:37–46

    Article  PubMed  CAS  Google Scholar 

  • Ladd MR, Lee SJ, Stitzel JD, Atala A, Yoo JJ (2011) Co-electrospun dual scaffolding system with potential for muscle-tendon junction tissue engineering. Biomaterials 32:1549–1559

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ, Yoo JJ, Lim GJ, Atala A, Stitzel J (2007) In vitro evaluation of electrospun nanofiber scaffolds for vascular graft application. J Biomed Mater Res A 83:999–1008

    PubMed  Google Scholar 

  • Li M, Mondrinos MJ, Gandhi MR, Ko FK, Weiss AS, Lelkes PI (2005a) Electrospun protein fibers as matrices for tissue engineering. Biomaterials 26:5999–6008

    Article  PubMed  CAS  Google Scholar 

  • Li WJ, Mauck RL, Tuan RS (2005b) Electrospun nanofibrous scaffolds: production, characterization, and applications for tissue engineering and drug delivery. J Biomed Nanotechnol 1:259–275

    Article  Google Scholar 

  • Li WJ, Mauck RL, Cooper JA, Yuan X, Tuan RS (2007) Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J Biomech 40:1686–1693

    Article  PubMed  Google Scholar 

  • Liang HC, Chang WH, Lin KJ, Sung HW (2003) Genipin-crosslinked gelatin microspheres as a drug carrier for intramuscular administration: in vitro and in vivo studies. J Biomed Mater Res A 65:271–282

    Article  PubMed  Google Scholar 

  • Liang HC, Chang Y, Hsu CK, Lee MH, Sung HW (2004) Effects of crosslinking degree of an acellular biological tissue on its tissue regeneration pattern. Biomaterials 25:3541–3552

    Article  PubMed  CAS  Google Scholar 

  • Ma Z, He W, Yong T, Ramakrishna S (2005) Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell Orientation. Tissue Eng 11:1149–1158

    Article  PubMed  CAS  Google Scholar 

  • Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3:232–238

    Article  PubMed  CAS  Google Scholar 

  • Mauck RL, Yuan X, Tuan RS (2006) Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteoarthritis Cartilage 14:179–189

    Article  PubMed  CAS  Google Scholar 

  • Mauck RL, Baker BM, Nerurkar NL, Burdick JA, Li WJ, Tuan RS, Elliott DM (2009) Engineering on the straight and narrow: the mechanics of nanofibrous assemblies for fiber-reinforced tissue regeneration. Tissue Eng Part B Rev 15:171–193

    Article  PubMed  CAS  Google Scholar 

  • Nathan AS, Baker BM, Nerurkar NL, Mauck RL (2010) Mechano-topographic modulation of stem cell nuclear shape on nanofibrous scaffolds. Acta Biomater 7:57–66

    Google Scholar 

  • Nerurkar NL, Elliott DM, Mauck RL (2007) Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering. J Orthop Res 25:1018–1028

    Article  PubMed  CAS  Google Scholar 

  • Nerurkar NL, Baker BM, Sen S, Wible EE, Elliott DM, Mauck RL (2009) Nanofibrous biologic laminates replicate the form and function of the annulus fibrosus. Nat Mater 8:986–992

    Article  PubMed  CAS  Google Scholar 

  • Pham QP, Sharma U, Mikos AG (2006a) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12:1197–1211

    Article  PubMed  CAS  Google Scholar 

  • Pham QP, Sharma U, Mikos AG (2006b) Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules 7:2796–2805

    Article  PubMed  CAS  Google Scholar 

  • Powell HM, Boyce ST (2006) EDC cross-linking improves skin substitute strength and stability. Biomaterials 27:5821–5827

    Article  PubMed  CAS  Google Scholar 

  • Rho KS, Jeong L, Lee G, Seo BM, Park YJ, Hong SD, Roh S, Cho JJ, Park WH, Min BM (2006) Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27:1452–1461

    Article  PubMed  CAS  Google Scholar 

  • Sefcik LS, Neal RA, Kaszuba SN, Parker AM, Katz AJ, Ogle RC, Botchwey EA (2008) Collagen nanofibres are a biomimetic substrate for the serum-free osteogenic differentiation of human adipose stem cells. J Tissue Eng Regen Med 2:210–220

    Article  PubMed  CAS  Google Scholar 

  • Sell SA, McClure MJ, Barnes CP, Knapp DC, Walpoth BH, Simpson DG, Bowlin GL (2006) Electrospun polydioxanone-elastin blends: potential for bioresorbable vascular grafts. Biomed Mater 1:72–80

    Article  PubMed  CAS  Google Scholar 

  • Shields KJ, Beckman MJ, Bowlin GL, Wayne JS (2004) Mechanical properties and cellular proliferation of electrospun collagen type II. Tissue Eng 10:1510–1517

    PubMed  CAS  Google Scholar 

  • Skaggs DL, Weidenbaum M, Iatridis JC, Ratcliffe A, Mow VC (1994) Regional variation in tensile properties and biochemical composition of the human lumbar anulus fibrosus. Spine 19:1310–1319

    Article  PubMed  CAS  Google Scholar 

  • Solorio L, Zwolinski C, Lund AW, Farrell MJ, Stegemann JP (2010) Gelatin microspheres crosslinked with genipin for local delivery of growth factors. J Tissue Eng Regen Med 4:514–523

    Article  PubMed  CAS  Google Scholar 

  • Somers P, De Somer F, Cornelissen M, Bouchez S, Gasthuys F, Narine K, Cox E, Van Nooten G (2008) Genipin blues: an alternative non-toxic crosslinker for heart valves? J Heart Valve Dis 17:682–688

    PubMed  Google Scholar 

  • Stankus JJ, Freytes DO, Badylak SF, Wagner WR (2008) Hybrid nanofibrous scaffolds from electrospinning of a synthetic biodegradable elastomer and urinary bladder matrix. J Biomater Sci Polym Ed 19:635–652

    Article  PubMed  CAS  Google Scholar 

  • Stegemann H, Stalder K (1967) Determination of hydroxyproline. Clin Chim Acta 18:267–273

    Article  PubMed  CAS  Google Scholar 

  • Stella JA, Liao J, Hong Y, David Merryman W, Wagner WR, Sacks MS (2008) Tissue-to-cellular level deformation coupling in cell micro-integrated elastomeric scaffolds. Biomaterials 29:3228–3236

    Article  PubMed  CAS  Google Scholar 

  • Stitzel J, Liu J, Lee SJ, Komura M, Berry J, Soker S, Lim G, Van Dyke M, Czerw R, Yoo JJ, Atala A (2006) Controlled fabrication of a biological vascular substitute. Biomaterials 27:1088–1094

    Article  PubMed  CAS  Google Scholar 

  • Sung HW, Chang Y, Liang IL, Chang WH, Chen YC (2000) Fixation of biological tissues with a naturally occurring crosslinking agent: fixation rate and effects of pH, temperature, and initial fixative concentration. J Biomed Mater Res 52:77–87

    Article  PubMed  CAS  Google Scholar 

  • Sung HW, Liang IL, Chen CN, Huang RN, Liang HF (2001) Stability of a biological tissue fixed with a naturally occurring crosslinking agent (genipin). J Biomed Mater Res 55:538–546

    Article  PubMed  CAS  Google Scholar 

  • Telemeco TA, Ayres C, Bowlin GL, Wnek GE, Boland ED, Cohen N, Baumgarten CM, Mathews J, Simpson DG (2005) Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning. Acta Biomater 1:377–385

    Article  PubMed  CAS  Google Scholar 

  • Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17:R89–R106

    Article  PubMed  CAS  Google Scholar 

  • Venugopal J, Ma LL, Yong T, Ramakrishna S (2005) In vitro study of smooth muscle cells on polycaprolactone and collagen nanofibrous matrices. Cell Biol Int 29:861–867

    Article  PubMed  CAS  Google Scholar 

  • Verzijl N, DeGroot J, Ben ZC, Brau-Benjamin O, Maroudas A, Bank RA, Mizrahi J, Schalkwijk CG, Thorpe SR, Baynes JW, Bijlsma JW, Lafeber FP, TeKoppele JM (2002) Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: a possible mechanism through which age is a risk factor for osteoarthritis. Arthritis Rheum 46:114–123

    Article  PubMed  CAS  Google Scholar 

  • Yannas IV, Tzeranis DS, Harley BA, So PT (2010) Biologically active collagen-based scaffolds: advances in processing and characterization. Philos Transact A Math Phys Eng Sci 368:2123–2139

    Article  PubMed  CAS  Google Scholar 

  • Zeugolis DI, Khew ST, Yew ES, Ekaputra AK, Tong YW, Yung LY, Hutmacher DW, Sheppard C, Raghunath M (2008) Electro-spinning of pure collagen nano-fibres—just an expensive way to make gelatin? Biomaterials 29:2293–2305

    Article  PubMed  CAS  Google Scholar 

  • Zhong S, Teo WE, Zhu X, Beuerman RW, Ramakrishna S, Yung LY (2006) An aligned nanofibrous collagen scaffold by electrospinning and its effects on in vitro fibroblast culture. J Biomed Mater Res A 79:456–463

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Mauck.

Additional information

This work was supported by the National Institutes of Health (R01 AR056624, RLM), The Department of Veterans’ Affairs (I01 RX000174, JLE) and the Penn Center for Musculoskeletal Disorders (P30 AR050950, RLM). Additional support was provided by the Penn Department of Orthopaedic Surgery (AOG) and a graduate fellowship from the National Science Foundation (BMB).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gee, A.O., Baker, B.M., Silverstein, A.M. et al. Fabrication and evaluation of biomimetic-synthetic nanofibrous composites for soft tissue regeneration. Cell Tissue Res 347, 803–813 (2012). https://doi.org/10.1007/s00441-011-1308-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-011-1308-1

Keywords

Navigation