Skip to main content

Advertisement

Log in

Expression of lymphatic endothelium-specific hyaluronan receptor LYVE-1 in the developing mouse kidney

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Our knowledge of the embryonic development of the lymphatic vessels within the kidney is limited. The aim of this study was to establish the time of appearance and the distribution of intra-renal lymphatic vessels in the developing mouse kidney by using the lymphatic marker, LYVE-1. Kidneys from embryonic day 12 (E12) to E18, from neonates at post-natal day 1 (P1) to P21, and from adults were studied. In the adult mouse kidney, LYVE-1 was expressed mainly in the lymphatic endothelial cells (LECs) and in a subset of endothelial cells in the glomerular capillaries. However, in the developing mouse kidney, LYVE-1 was also expressed transiently in F4/80+/CD11b immature macrophages/dendritic cells and in the developing renal vein. LYVE-1+ lymphatic vessels connected with extra-renal lymphatics were detected in the kidney at E13. F4/80+/CD11b/LYVE-1+ immature macrophages/dendritic cells appeared prior to the appearance of LYVE-1+ renal lymphatic vessels and were closely intermingled or even formed part of the lymphatic vascular wall. Prox1 was expressed only in the LYVE-1+ LECs from fetus to adult-hood, but not in LYVE-1+ endothelial cells of the developing renal vein and macrophages/dendritic cells. Thus, lymphatic vessels of the kidney might originate by extension of extra-renal lymphatics through an active branching process possibly associated with F4/80+/CD11b/LYVE-1+ macrophages/dendritic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Al-Rawi MA, Mansel RE, Jiang WG (2005) Molecular and cellular mechanisms of lymphangiogenesis. Eur J Surg Oncol 31:117–121

    Article  CAS  PubMed  Google Scholar 

  • Alitalo K, Tammela T, Petrova TV (2005) Lymphangiogenesis in development and human disease. Nature 38:946–953

    Article  Google Scholar 

  • Attout T, Hoerauf A, Dénécé G, Debrah AY, Marfo-Debrekyei Y, Boussinesq M, Wanji S, Martinez V, Mand S, Adjei O, Bain O, Specht S, Martin C (2009) Lymphatic vascularisation and involvement of Lyve-1+ macrophages in the human onchocerca nodule. PLoS ONE 4:e8234

    Article  PubMed  Google Scholar 

  • Austyn JM, Hankins DF, Larsen CP, Morris PJ, Rao AS, Roake JA (1994) Isolation and characterization of dendritic cells from mouse heart and kidney. J Immunol 152:2401–2410

    CAS  PubMed  Google Scholar 

  • Banerji S, Ni J, Wang SX, Clasper S, Su J, Tammi R, Jones M, Jackson DG (1999) LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 144:789–801

    Article  CAS  PubMed  Google Scholar 

  • Beasley NJ, Prevo R, Banerji S, Leek RD, Moore J, Van Tranppen P, Cox G, Harris AL, Jackson DG (2002) Intratumoral lymphangiogenesis and lymph node metastasis in head and neck cancer. Cancer Res 62:1315–1320

    CAS  PubMed  Google Scholar 

  • Bixel MG, Adams RH (2008) Master and commander: continued expression of Prox1 prevents the dedifferentiation of lymphatic endothelial cells. Genes Dev 22:3282–3291

    Article  Google Scholar 

  • Bouwens L, DeBlay E (1996) Islet morphogenesis and stem cell markers in rat pancreas. J Histochem Cytochem 44:947–951

    CAS  PubMed  Google Scholar 

  • Cursiefen C, Chen L, Borges LP, Jackson D, Cao J, Radziejewski C, D’Amore PA, Dana MR, Wiegand SJ, Streilein JW (2004) VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 113:1040–1050

    CAS  PubMed  Google Scholar 

  • Cuttino JT Jr, Jennette JC, Clark RL, Kwock L (1985) Renal medullary lymphatics: microrediographic, light, and electron microscopic studies in pigs. Lymphology 18:24–30

    PubMed  Google Scholar 

  • Gale NW, Prevo R, Espinosa J, Ferguson DJ, Dominguez MG, Yancopoulod GD, Thurston G, Jackson DG (2007) Normal lymphatic development and function in mice deficient for the lymphatic hyaluronan receptor LYVE-1. Mol Cell Biol 27:595–604

    Article  CAS  PubMed  Google Scholar 

  • Grant AJ, Goddard S, Ahmed-Choudhury J, Reynolds G, Jackson DG, Briskin M, Wu L, Hübscher SG, Adams DH (2002) Hepatic expression of secondary lymphoid chemokine (CCL21) promotes the development of portal-associated lymphoid tissue in chronic inflammatory liver disease. Am J Pathol 160:1445–1455

    Article  CAS  PubMed  Google Scholar 

  • Hamrah P, Chen L, Cursiefen C, Zhang Q, Joyce NC, Dana MR (2004) Expression of vascular endothelial growth factor receptor-3 (VEGFR-3) on monocytic bone marrow-derived cells in the conjunctiva. Exp Eye Res 79:553–561

    Article  CAS  PubMed  Google Scholar 

  • Harvey NL, Oliver G (2004) Choose your fate: artery, vein or lymphatic vessel? Curr Opin Genet Dev 14:499–505

    Article  CAS  PubMed  Google Scholar 

  • He Y, Rajantie I, Ilmonen M, Makinen T, Karkkainen MJ, Haiko P, Salven P, Alitalo K (2004) Preexisting lymphatic endothelium but not endothelial progenitor cells are essential for tumor lymphangiogenesis and lymphatic metastasis. Cancer Res 64:3737–3740

    Article  CAS  PubMed  Google Scholar 

  • Hirakawa S, Detmar M (2004) New insights into the biology and pathology of the cutaneous lymphatic system. J Dermatol Sci 35:1–8

    Article  CAS  PubMed  Google Scholar 

  • Hirakawa S, Hong YK, Harvey N, Schacht V, Matsuda K, Libermann T, Detmar M (2003) Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am J Pathol 162:575–586

    Article  CAS  PubMed  Google Scholar 

  • Hogg CM, Reid O, Scothorne RJ (1982) Studies on hemolymph nodes. III. Renal lymph as a major source of erythrocytes in the renal hemolymph node of the rat. J Anat 135:291–299

    CAS  PubMed  Google Scholar 

  • Holmes MJ, O’Morchoe PJ, O’Morchoe CC (1977) Morphology of the intrarenal lymphatic system. Capsular and hilar communications. Am J Anat 149:333–351

    Article  CAS  PubMed  Google Scholar 

  • Jackson DG (2004) Biology of the lymphatic marker LYVE-1 and applications in research into lymphatic trafficking and lymphangiogenesis. APMIS 112:526–538

    Article  CAS  PubMed  Google Scholar 

  • Jackson DG, Prevo R, Clasper S, Banerji S (2001) LYVE-1, the lymphatic system and tumor lymphangiogenesis. Trends Immunol 22:317–321

    Article  CAS  PubMed  Google Scholar 

  • Jeon BH, Jang C, Han J, Kataru RP, Piao L, Jung K, Cha HJ, Schwendener RA, Jang KY, Kim KS, Alitalo K, Koh GY (2008) Profound but dysfunctional lymphangiogenesis via vascular endothelial growth factor ligands from CD11b+ macrophages in advanced ovarian cancer. Cancer Res 68:1100–1109

    Article  CAS  PubMed  Google Scholar 

  • Johnson NC, Dillard ME, Baluk P, McDonald DM, Harvey NL, Frase SL, Oliver G (2008) Lymphatic endothelial cell identity is reversible and its maintenance requires Prox1 activity. Genes Dev 22:3232–3235

    Article  Google Scholar 

  • Jurisic G, Detmar M (2009) Lymphatic endothelium in health and disease. Cell Tissue Res 335:97–108

    Article  CAS  PubMed  Google Scholar 

  • Kerjaschki D (2005a) Lymphatic neoangiogenesis in human neoplasia and transplantation as experiments of nature. Kidney Int 68:1967–1968

    Google Scholar 

  • Kerjaschki D (2005b) The crucial role of macrophages in lymphangiogenesis. J Clin Invest 115:2316–2319

    Article  CAS  PubMed  Google Scholar 

  • Kerjaschki D (2007) How to control lymphangiogenesis: a novel role for rapamycin. Kidney Int 71:717–719

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Kim WY, Han KH, Knepper MA, Nielsen S, Madsen KM (1999) Developmental expression of aquaporin 1 in the rat renal vasculature. Am J Physiol Renal Physiol 276:F498–F509

    CAS  Google Scholar 

  • Kriehuber E, Breiteneder-Geleff S, Groeger M, Soleiman A, Schoppmann SF, Stingl G, Kerjaschki D, Maurer D (2001) Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J Exp Med 194:797–808

    Article  CAS  PubMed  Google Scholar 

  • Kubo H, Fujiwara T, Jussila L, Hashi H, Ogawa M, Shimizu K, Awane M, Sakai Y, Takabayashi A, Alitalo K, Yamaoka Y, Nishikawa SI (2000) Involvement of vascular endothelial growth factor receptor-3 in maintenance of integrity of endothelial cell lining during tumor angiogenesis. Blood 96:546–553

    CAS  PubMed  Google Scholar 

  • Lendahl U, Zimmerman LB, McKay RD (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60:585–595

    Article  CAS  PubMed  Google Scholar 

  • Maby-El Hajjami H, Petrova TV (2008) Developmental and pathological lymphangiogenesis: from models to human disease. Histochem Cell Biol 130:1063–1078

    Article  CAS  PubMed  Google Scholar 

  • Madsen KM, Nielsen S, Tisher CC (2008) Anatomy of the kidney. In: Brenner BM (ed) Brenner and Rector’s The kidney, vol 1, Lymphatics. Saunders Elsevier, Philadelphia, pp 25–90

    Google Scholar 

  • Maruyama K, Li M, Cursiefen C, Jackson DG, Keino H, Tomita M, Rooijen NV, Takenaka H, D’Amore PA, Stein-Streilein J, Losordo DW, Streilein JW (2005) Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest 115:2363–2372

    Article  CAS  PubMed  Google Scholar 

  • Maruyama K, Asai J, Ii M, Thorne T, Losordo DW, D’Amore PA (2007) Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing. Am J Pathol 170:1178–1191

    Article  PubMed  Google Scholar 

  • Matsui K, Nagy-Bojarsky K, Laakkonen P, Krieger S, Mechtler K, Uchida S, Geleff S, Kang DH, Johnson RJ, Kerjaschki D (2003) Lymphatic microvessels in the rat remnant kidney model of renal fibrosis: aminopeptidase P and podoplanin are discriminatory markers for endothelial cells of blood and lymphatic vessels. J Am Soc Nephrol 14:1981–1989

    Article  CAS  PubMed  Google Scholar 

  • Mouta Carreira C, Nasser SM, Tomaso E di, Padera TP, Boucher Y, Tomarev SI, Jain RK (2001) LYVE-1 is not restricted to the lymph vessels expression in normal liver blood sinusoids and down-regulation in human liver cancer and cirrhosis. Cancer Res 61:8079–8084

    CAS  PubMed  Google Scholar 

  • Niki T, Iba S, Yamada T, Matsuno Y, Enholm B, Hirohashi S (2001) Expression of vascular endothelial growth factor receptor 3 in blood and lymphatic vessels of lung adenocarcinoma. J Pathol 193:450–457

    Article  CAS  PubMed  Google Scholar 

  • Oliver G (2004) Lymphatic vasculature development. Nat Rev Immunol 4:35–45

    Article  CAS  PubMed  Google Scholar 

  • Oliver G, Detmar M (2002) The rediscovery of lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. Genes Dev 16:773–784

    Article  CAS  PubMed  Google Scholar 

  • Oliver G, Alitalo K (2005) The lymphatic vasculature: recent progress and paradigms. Annu Rev Cell Dev Biol 21:457–483

    Article  CAS  PubMed  Google Scholar 

  • Petrova TV, Makinen T, Makela TP, Saarela J, Virtanen I, Ferrell RE, Finegold DN, Kerjaschki D, Yla-Herttuala S, Alitalo K (2002) Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcriptin factor. EMBO J 21:4593–4599

    Article  CAS  PubMed  Google Scholar 

  • Prevo R, Banerji S, Ferguson D, Jackson DG (2001) Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium. J Biol Chem 276:19420–19430

    Article  CAS  PubMed  Google Scholar 

  • Pure E, Cuff CA (2001) A crucial role for CD44 in inflammation. Trends Mol Med 7:213–221

    Article  CAS  PubMed  Google Scholar 

  • Rinda Soong T, Pathak AP, Asano H, Fox-Talbot K, Baldwin WM 3rd (2010) Lymphatic injury and regeneration in cardiac allografts. Transplantation 89:500–508

    Article  Google Scholar 

  • Rohn DA, Stewart RH, Elk JR, Laine GA, Drake RE (1996) Renal lymphatic function following venous pressure elevation. Lymphology 29:67–75

    CAS  PubMed  Google Scholar 

  • Sabin FR (1909) The lymphatic system in human embryos, with a consideration of the morphology of the system as a whole. Am J Anat 9:43–91

    Article  Google Scholar 

  • Schacht V, Dandras SS, Johnson LA, Jackson DG, Hong YK, Detmar M (2005) Up-regulation of the lymphtic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am J Pathol 166:913–921

    Article  CAS  PubMed  Google Scholar 

  • Schledzewski K, Falkowski M, Moldenhauer G, Metharom P, Kzhyshkowska J, Ganss R, Demory A, Falkowska-Hansen B, Kurzen H, Ugurel S, Geginat G, Arnold B, Goerdt S (2006) Lymphatic endothelium-specific hyaluronan receptor LYVE-1 is expressed by stabilin-1+, F4/80+, CD11b+ macrophages in malignant tumours and wound healing tissue in vivo and in bone marrow cultures in vitro: implications for the assessment of lymphangiogenesis. J Pathol 209:67–77

    Article  CAS  PubMed  Google Scholar 

  • Schoppmann SF, Birner P, Stöckl J, Kalt R, Ullrich R, Caucig C, Kriehuber E, Nagy K, Alitalo K, Kerjaschki D (2002) Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 161:947–956

    Article  CAS  PubMed  Google Scholar 

  • Schroedl F, Brehmer A, Neuhuber WL, Kruse FE, May CA, Cursiefen C (2008) The normal human choroid is endowed with a significant number of lymphatic vessel endothelial hyaluronate receptor 1 (LYVE-1)-positive macrophages. Invest Ophthalmol Vis Sci 49:5222–5229

    Article  PubMed  Google Scholar 

  • Shortman K, Liu YJ (2002) Mouse and human dendritic cell subtypes. Nat Rev Immunol 2:151–161

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan RS, Dillard ME, Lagutin OV, Lin FJ, Tsai S, Tsai MJ, Samokhvalov IM, Oliver G (2007) Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes Dev 21:2422-2432 (Comment in Lymphat Res Biol 5:275–276)

    Article  CAS  PubMed  Google Scholar 

  • Tammela T, Petrova TV, Alitalo K (2005) Molecular lymphangiogenesis: new players. Trends Cell Biol 15:434–441

    Article  CAS  PubMed  Google Scholar 

  • Wigle JT, Oliver G (1999) Prox1 function is required for the development of the murine lymphatic system. Cell 98:769–778

    Article  CAS  PubMed  Google Scholar 

  • Wigle JT, Harvey N, Detmar M, Lagurina I, Grosveld G, Gunn MD, Jackson DG, Oliver G (2002) An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J 21:1505–1513

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Craig C. Tisher and Kirsten M. Madsen (University of Florida) for advice during this study and also thank Hong-Lim Kim for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Kim.

Additional information

Hyun-Wook Lee and Yan-Xia Qin contributed equally to this work. Some of this work has been published in abstract form (J Am Soc Nephrol 17:TH-PO644, 2006) and presented at the Renal Week 2006 Meeting, San Diego, Calif., USA, November 16–19, 2006.

This work was supported by the Korea Science and Engineering Foundation (R13-2002-005-03001-0) through the Medical Research Center for Cell Death Disease Research Center at The Catholic University of Korea.

The authors declare no conflicts of interest.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Fig. S1

(GIF 72 kb)

High resolution image (TIFF 654 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, HW., Qin, YX., Kim, YM. et al. Expression of lymphatic endothelium-specific hyaluronan receptor LYVE-1 in the developing mouse kidney. Cell Tissue Res 343, 429–444 (2011). https://doi.org/10.1007/s00441-010-1098-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-1098-x

Keywords

Navigation