Skip to main content
Log in

Bidirectional reprogramming of mouse embryonic stem cell/fibroblast hybrid cells is initiated at the heterokaryon stage

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Immunofluorescent analysis of markers specific for parental genomes was used to study heterokaryons and hybrid cells soon after the fusion of diploid embryonic stem (ES) cells marked with green fluorescent protein and diploid fibroblasts labeled by blue fluorescent beads. Heterokaryons were identified by an analysis of parental mitochondrial DNAs. Within 20 h after fusion, most heterokaryons (up to 80%) had a fibroblast-like phenotype, being positive for typical fibroblast markers (collagen type I, fibronectin, lamin A/C) and for the modification me3H3K27 chromatin marking the inactive X chromosome but being negative for Oct4 and Nanog. Approximately 20% of heterokaryons had an alternative ES-like phenotype being positive for Oct4 and Nanog, with signs of reactivation of the previously inactive X-chromosome but negative for fibroblast markers. Hybrid cells having alternative phenotypes were easily identified from 24-48 h. The level of DNA methylation at the promoter of the fibroblast Oct4 allele in the ES-like hybrid cells at day 4 was similar to that of ES cells but at the same time, both parental Oct4 alleles were heavily methylated in fibroblast-like hybrid cells. Thus, bidirectional reprogramming initiated at the heterokaryon stage seems to lead to the formation of two types of hybrid cells with alternative dominance of the parental genomes. However, the further fates of two types of hybrid cells are different: ES-like hybrid cells form colonies at 4-6 days but no colonies are derived from the fibroblast-like hybrid cells. The latter grow as disconnected single cells and are unable to form colonies, like mouse embryonic fibroblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ambrosi DJ, Tanasijevic D, Kaur A, Obergfell C, O’Neill RJ, Krueger W, Rasmussen TP (2007) Genome-wide reprogramming in hybrids of somatic cells and embryonic stem cells. Stem Cells 25:1104–1113

    Article  CAS  PubMed  Google Scholar 

  • Battulin NR, Prisyazhnyuk IE, Matveeva NM, Fishman VS, Vasilkova AA, Serov OL (2009) Allelic expression and DNA methylation profiles of promoters at the parental Oct4 and Nanog genes in Mus musculus ES cell/Mus caroli splenocyte hybrid cells. Cell Tissue Res 337:439–444

    Article  CAS  PubMed  Google Scholar 

  • Bhutani N, Brady JJ, Damian M, Sacco A, Corbel SY, Blau HM (2010) Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463:1042–1047

    Article  CAS  PubMed  Google Scholar 

  • Blau YM, Chiu C-P, Webster C (1983) Cytoplasmic activation of human nuclear genes in stable heterokaryons. Cell 32:1171–1180

    Article  CAS  PubMed  Google Scholar 

  • Constantinescu D, Gray HL, Sammak PJ, Schatten GP, Csoka AB (2006) Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells 24:177–185

    Article  CAS  PubMed  Google Scholar 

  • Cowan CA, Atienza J, Melton DA, Eggan K (2005) Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309:1369–1373

    Article  CAS  PubMed  Google Scholar 

  • Han DW, Do JT, Gentile L, Stehling M, Taek H, Schöler Y (2008) Pluripotential reprogramming of the somatic genome in hybrid cells occurs with the first cell cycle. Stem Cells 26:445–454

    Article  CAS  PubMed  Google Scholar 

  • Kruglova AA, Kizilova EA, Zhelezova AI, Gridina MM, Golubitsa AN, Serov OL (2008) Embryonic stem cell/fibroblast hybrid cells with near-tetraploid karyotype provide high yield of chimeras. Cell Tissue Res 334:371–380

    Article  CAS  PubMed  Google Scholar 

  • Kruglova AA, Matveeva NM, Gridina MM, Battulin NR, Karpov A, Kiseleva EV, Morozova KN, Serov OL (2010) Dominance of parental genomes in embryonic stem cell/fibroblast hybrid cells depends on the ploidy of the somatic partner. Cell Tissue Res 340:437–450

    Article  CAS  PubMed  Google Scholar 

  • Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R, Plath K, Hochedlinger K (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1:55–70

    Article  CAS  PubMed  Google Scholar 

  • Matveeva NM, Shilov AG, Kaftanovskaya EM, Maximovsky LF, Zhelezova AI, Golubitsa AN, Bayborodin SI, Fokina MM, Serov OL (1998) In vitro and in vivo study of pluripotency in intraspecific hybrid cells obtained by fusion of murine embryonic stem cells with splenocytes. Mol Reprod Dev 50:128–138

    Article  CAS  PubMed  Google Scholar 

  • Matveeva NM, Pristyazhnyuk IE, Temirova SA, Menzorov AG, Vasilkova A, Shilov AG, Smith A, Serov OL (2005) Unequal segregation of parental chromosomes in embryonic stem cell hybrids. Mol Reprod Dev 71:305–314

    Article  CAS  PubMed  Google Scholar 

  • Menzorov AG, Matveeva NM, Larkin DM, Zaykin DV, Serov OL (2008) Fate of parental mitochondria in embryonic stem hybrid cells. Cell Tissue Biol 2:393–399

    Article  Google Scholar 

  • Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schroderet P, Bernstein BE, Jaenisch R, Lander E, Meissner A (2008) Dissecting direct reprogramming through integrative genomic analysis. Nature 454:49–55

    Article  CAS  PubMed  Google Scholar 

  • Palermo A, Doyonnas R, Bhutani N, Pomerantz J, Alkan O, Blau HM (2009) Nuclear reprogramming in heterokaryons is rapid, extensive, and bidirectional. FASEB J 23:1431–1440

    Article  CAS  PubMed  Google Scholar 

  • Pells S, Di Domenico AI, Gallagher EJ, McWhir J (2002) Multipotentiality of neuronal cells after spontaneous fusion with embryonic stem cells and nuclear reprogramming in vitro. Cloning Stem Cells 4:331–338

    Article  CAS  PubMed  Google Scholar 

  • Pereira CF, Terranova R, Ryan NK, Santos J, Morris KJ, Gui W, Merkenschlager M, Fisher AG (2008) Heterokaryo-based reprogramming of human B lymphocytes for pluripotency requires Oct4 but not Sox2. PLoS Genet 4:e1000170

    Article  PubMed  CAS  Google Scholar 

  • Pratt T, Sharp L, Nichols J, Price DJ, Mason JO (2000) Embryonic stem cells and transgenic mice ubiquitously expressing a tau-tagged green fluorescent protein. Dev Biol 228:19–28

    Article  CAS  PubMed  Google Scholar 

  • Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen TW, Smith A (2008) Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol 6:e253

    Article  PubMed  CAS  Google Scholar 

  • Stadtfeld M, Maherali N, Breault DT, Hochedlinger K (2008) Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2:230–240

    Article  CAS  PubMed  Google Scholar 

  • Sullivan S, Pells S, Hooper M, Gallagher E, McWhir J (2006) Nuclear reprogramming of somatic cells by embryonic stem cells is affected by cell cycle stage. Cloning Stem Cells 8:174–188

    Article  CAS  PubMed  Google Scholar 

  • Sumer H, Jones KL, Liu J, Rollo BN, Boxtel AL van, Pralong D, Verma PJ (2008) Transcriptional changes in somatic cells recovered from ES-somatic heterokaryons. Stem Cells Dev 18:1361–1368

    Article  CAS  Google Scholar 

  • Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T (2001) Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 11:1553–1558

    Article  CAS  PubMed  Google Scholar 

  • Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, Morel L, Petersen BE, Scott EW (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416:542–545

    Article  CAS  PubMed  Google Scholar 

  • Terranova R, Pereira CF, Du Roure C, Merkenschlager M, Fisher AG (2006) Acquisition and extinction of gene expression programs are separate events in heterokaryon reprogramming. J Cell Sci 119:2065–2072

    Article  CAS  PubMed  Google Scholar 

  • Vasilkova AA, Kizilova HA, Puzakov MV, Shilov AG, Zhelezova AI, Golubitsa AN, Battulin NR, Vedernikov VE, Menzorov AG, Matveeva NM, Serov OL (2007) Dominant manifestation of pluripotency in embryonic stem cell hybrids with various numbers of somatic chromosomes. Mol Reprod Dev 74:941–951

    Article  CAS  PubMed  Google Scholar 

  • Ying Q-L, Nichols J, Evans EP, Smith A (2002) Changing potency by spontaneous fusion. Nature 416:545–547

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg L. Serov.

Additional information

This study was financially supported by grant N 08-04-00825 from the Russian Fund of Basic Research (Russia) and grant N48 from SO RAN (Russia).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gridina, M.M., Serov, O.L. Bidirectional reprogramming of mouse embryonic stem cell/fibroblast hybrid cells is initiated at the heterokaryon stage. Cell Tissue Res 342, 377–389 (2010). https://doi.org/10.1007/s00441-010-1085-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-1085-2

Keywords

Navigation