Skip to main content
Log in

Anticoncentration and Berry–Esseen bounds for random tensors

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We obtain estimates for the Kolmogorov distance to appropriately chosen gaussians, of linear functions

$$\begin{aligned} \sum _{i\in [n]^d} \theta _i X_i \end{aligned}$$

of random tensors \(\varvec{X}=\langle X_i:i\in [n]^d\rangle \) which are symmetric and exchangeable, and whose entries have bounded third moment and vanish on diagonal indices. These estimates are expressed in terms of intrinsic (and easily computable) parameters associated with the random tensor \(\varvec{X}\) and the given coefficients \(\langle \theta _i:i\in [n]^d\rangle \), and they are optimal in various regimes. The key ingredient—which is of independent interest—is a combinatorial CLT for high-dimensional tensors which provides quantitative non-asymptotic normality under suitable conditions, of statistics of the form

$$\begin{aligned} \sum _{(i_1,\dots ,i_d)\in [n]^d} \varvec{\zeta }\big (i_1,\dots ,i_d,\pi (i_1),\dots ,\pi (i_d)\big ) \end{aligned}$$

where \(\varvec{\zeta }:[n]^d\times [n]^d\rightarrow \mathbb {R}\) is a deterministic real tensor, and \(\pi \) is a random permutation uniformly distributed on the symmetric group \(\mathbb {S}_n\). Our results extend, in any dimension d, classical work of Bolthausen who covered the one-dimensional case, and more recent work of Barbour/Chen who treated the two-dimensional case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. In this context, the euclidean norm is also referred to as the Hilbert–Schmidt norm.

  2. See Paragraph 12.2.1 for the definition of extendability.

  3. Note that \(\pi \circ i:=\big (\pi (i_1),\dots ,\pi (i_s)\big )\in [n]^s_{\textrm{Inj}}\) for every \(\pi \in \mathbb {S}_n\) and every \(i=(i_1,\dots ,i_s)\in [n]^s_{\textrm{Inj}}\).

  4. This result was not explicitly isolated in [3], but it follows fairly straightforwardly from the methods developed therein.

  5. Recall that a random vector \(\varvec{X}\) in \(\mathbb {R}^n\) is called isotropic if its entries are uncorrelated random variables with zero mean and unit variance.

  6. We note that closely related questions have been studied earlier—see, e.g. [46].

  7. Here, we identify \(\left( {\begin{array}{c}[n]\\ k\end{array}}\right) \) with the set of all \(x\in \{0,1\}^n\) which have exactly k nonzero coordinates.

  8. We follow the convention that \(\frac{1}{0}=\infty \).

  9. That is, t is either the empty map, or a nonempty, partial, one-to-one map from [s] into [n].

  10. That is, \(t(i_1,i_2)\) is the unique permutation which maps \(i_1\) to \(i_2\) and \(i_2\) to \(i_1\), and it is the identity on \([n]\setminus \{i_1,i_2\}\).

  11. More precisely, in these cases the index set I can be identified with the set \(\left( {\begin{array}{c}[n]\\ d\end{array}}\right) \) and the group G consists of those permutations \(\overline{\pi }\) of \(\left( {\begin{array}{c}[n]\\ d\end{array}}\right) \) which are of the form \(\overline{\pi }\big (\{j_1,\dots ,j_d\}\big )= \{\pi (j_1),\dots ,\pi (j_d)\}\) for some permutation \(\pi \) of [n].

  12. In fact, it is quite likely that this question has already been asked, but we could not find something relevant in the literature.

  13. That is, \(\sum _{i_0\sqsubseteq i\in [n]^s} g_s(i)=0\) for every \(i_0\in [n]^{s-1}\).

  14. Here, for every tensor \(g:[n]^s\rightarrow \mathbb {R}\) and every \(p>1\) we set \(\Vert g\Vert _{\ell _p}:=\big ( \sum _{i\in [n]^s} |g(i)|^p\big )^{1/p}\).

  15. Specifically, it affects the constant \(\kappa \).

  16. Recall that for every \(i=(i_1,\dots ,i_r)\in [n]^r\) and every \(\tau \in \mathbb {S}_r\) we set \(i \circ \tau =(i_{\tau (1)},\dots ,i_{\tau (r)})\in [n]^r\).

  17. Here, given two positive quantities a and b, we write \(a\gtrsim b\) to denote the fact that \(a\geqslant C b\) for some positive universal constant C.

  18. More precisely, of length cn where \(c>0\) is a sufficiently small constant.

  19. Here, we assume that this process is sufficiently measurable.

  20. The argument in this context is actually simpler.

References

  1. Aldous, D.J.: Representations for partially exchangeable arrays of random variables. J. Multivar. Anal. 11, 581–597 (1981)

    MathSciNet  MATH  Google Scholar 

  2. Aldous, D.J.: Exchangeability and related topics. In: École d’été de Probabilités de Saint-Flour XIII, Lecture Notes in Mathematics, vol. 1117, pp. 1–198. Springer (1983)

  3. Barbour, A.D., Chen, L.H.Y.: The permutation distribution of matrix correlation statistics. In: Stein’s Method and Applications, Lecture Notes Series, vol. 5, pp. 223–245. Institute for Mathematical Sciences, National University of Singapore, Singapore University Press (2005)

  4. Barbour, A.D., Chen, L.H.Y.: Stein’s (Magic) Method (2014). https://arxiv.org/pdf/1411.1179.pdf

  5. Barbour, A.D., Eagleson, G.K.: Random association of symmetric arrays. Stoch. Anal. Appl. 4, 239–281 (1986)

    MathSciNet  MATH  Google Scholar 

  6. Blum, J.R., Chernoff, H., Rosenblatt, H., Teicher, H.: Central limit theorems for interchangeable processes. Canada J. Math. 10, 222–229 (1958)

    MathSciNet  MATH  Google Scholar 

  7. Bobkov, S.G.: Concentration of normalized sums and a central limit theorem for noncorrelated random variables. Ann. Probab. 32, 2884–2908 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Bobkov, S.G., Chistyakov, G.P., Götze, F.: Berry–Esseen bounds for typical weighted sums. Electron. J. Probab. 23, 1–22 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Bolthausen, E.: An estimate of the remainder in a combinatorial central limit theorem. Z. Wahrsch. Verw. Gebiete 66, 379–386 (1984)

    MathSciNet  MATH  Google Scholar 

  10. Bolthausen, E., Götze, F.: The rate of convergence for multivariate sampling statistics. Ann. Stat. 21, 1692–1710 (1993)

    MathSciNet  MATH  Google Scholar 

  11. Bloznelis, M., Götze, F.: Orthogonal decomposition of finite population statistics and its distributional asymptotics. Ann. Stat. 29, 899–917 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Bloznelis, M., Götze, F.: An Edgeworth expansion for symmetric finite population statistics. Ann. Probab. 30, 1238–1265 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Carbery, A., Wright, J.: Distributional and \(L^q\) norm inequalities for polynomials over convex bodies in \(\mathbb{R} ^n\). Math. Res. Lett. 8, 233–248 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Chatterjee, S.: A short survey of Stein’s method. In: Proceedings of the International Congress of Mathematicians, vol. IV, pp. 13–21, Seoul, Korea (2014)

  15. Chen, L.H.Y., Fang, X.: On the error bound in a combinatorial central limit theorem. Bernoulli 21, 335–359 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Chen, L.H.Y., Goldstein, L., Shao, Q.M.: Normal Approximation by Stein’s Method. Probability and Its Applications. Springer, Berlin (2011)

    Google Scholar 

  17. Chen, L.H.Y., Shao, Q.M.: Normal approximation for nonlinear statistics using a concentration inequality approach. Bernoulli 13, 581–599 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Costello, K.P., Tao, T., Vu, V.: Random symmetric matrices are almost surely nonsingular. Duke Math. J. 135, 395–413 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Daniels, H.E.: The relation between measures of correlation in the universe of sample permutations. Biometrika 33, 129–135 (1944)

    MathSciNet  MATH  Google Scholar 

  20. Davezies, L., D’Haultfœuille, X., Guyonvarch, Y.: Empirical process results for exchangeable arrays. Ann. Stat. 49, 845–862 (2021)

    MathSciNet  MATH  Google Scholar 

  21. de Jong, P.: A central limit theorem for generalized multilinear forms. J. Multivar. Anal. 34, 275–289 (1990)

    MathSciNet  MATH  Google Scholar 

  22. Diaconis, P., Freedman, D.: Finite exchangeable sequences. Ann. Probab. 8, 745–764 (1980)

    MathSciNet  MATH  Google Scholar 

  23. Diaconis, P., Freedman, D.: A dozen de Finetti-style results in search of a theory. Ann. Inst. Henri Poincaré Probab. Stat. 23, 397–423 (1987)

    MathSciNet  MATH  Google Scholar 

  24. Döbler, Ch., Kasprzak, M., Peccati, G.: The multivariate functional de Jong CLT. Probab. Theory Relat. Fields 184, 367–399 (2022)

    MathSciNet  MATH  Google Scholar 

  25. Eagleson, G.K., Weber, N.C.: Limit theorems for weakly exchangeable arrays. Math. Proc. Camb. Philos. Soc. 84, 123–130 (1978)

    MathSciNet  MATH  Google Scholar 

  26. Erdős, P.: On a lemma of Littlewood and Offord. Bull. Am. Math. Soc. 51, 898–902 (1945)

    MathSciNet  MATH  Google Scholar 

  27. Filmus, Y., Kindler, G., Mossel, E., Wimmer, K.: Invariance principle on the slice. ACM Trans. Comput. Theory 10, 37 (2018)

  28. Filmus, Y., Mossel, E.: Harmonicity and invariance on slices of the Boolean cube. Probab. Theory Relat. Fields 175, 721–782 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science, 2nd edn. Addison-Wesley Publishing Group, Boston (1994)

    MATH  Google Scholar 

  30. Hoeffding, W.: A class of statistics with asymptotically normal distribution. Ann. Math. Stat. 19, 293–325 (1948)

    MathSciNet  MATH  Google Scholar 

  31. Hoeffding, W.: A combinatorial central limit theorem. Ann. Math. Stat. 22, 558–566 (1951)

    MathSciNet  MATH  Google Scholar 

  32. Hoover, D.N.: Relations on probability spaces and arrays of random variables (1979). https://www.stat.berkeley.edu/~aldous/Research/hoover.pdf

  33. Kallenberg, O.: Probabilistic Symmetries and Invariance Principles. Probability and its Applications. Springer, New York (2005)

    MATH  Google Scholar 

  34. Kwan, M., Sudakov, B., Tran, T.: Anticoncentration for subgraph statistics. J. Lond. Math. Soc. 99, 757–777 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Littlewood, J.E., Offord, A.C.: On the number of real roots of a random algebraic equation. III. Rec. Math. (Mat. Sbornik) Nouv. Ser. 12, 277–286 (1943)

    MathSciNet  MATH  Google Scholar 

  36. Litvak, A.E., Lytova, A., Tikhomirov, K., Tomczak-Jaegermann, N., Youssef, P.: Adjacency matrices of random digraphs: singularity and anti-concentration. J. Math. Anal. Appl. 445, 1447–1491 (2017)

    MathSciNet  MATH  Google Scholar 

  37. Loh, W.L.: On Latin hypercube sampling. Ann. Stat. 24, 2058–2080 (1996)

    MathSciNet  MATH  Google Scholar 

  38. Meka, R., Nguyen, O., Vu, V.: Anti-concentration for polynomials of independent random variables. Theory Comput. 12, Paper No. 11, 16 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Mossel, E., O’Donnell, R., Oleszkiewicz, K.: Noise stability of functions with low influences: invariance and optimality. Ann. Math. 171, 295–341 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Nguyen, H.H., Vu, V.: Small ball probability, inverse theorems, and applications. In: Erdős centennial, Bolyai Society Mathematical Studies, vol. 25, pp. 409–463. Springer, Berlin (2013)

  41. Nourdin, I., Peccati, G.: Normal Approximations with Malliavin Calculus. From Stein’s Method to Universality, Cambridge Tracts in Mathematics, vol. 192. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  42. Peccati, G.: Hoeffding-ANOVA decompositions for symmetric statistics of exchangeable observations. Ann. Probab. 32, 1796–1829 (2004)

    MathSciNet  MATH  Google Scholar 

  43. Peccati, G., Pycke, J.-R.: Hoeffding spaces and Specht modules. ESAIM Probab. Stat. 15, S58–S68 (2011)

    MathSciNet  Google Scholar 

  44. Razborov, A., Viola, E.: Real advantage. ACM Trans. Comput. Theory 5, 1–8 (2013)

  45. Robbins, H.: A remark on Stirling’s formula. Am. Math. Mon. 62, 26–29 (1955)

    MathSciNet  MATH  Google Scholar 

  46. Rosiński, J., Samorodnitsky, G.: Symmetrization and concentration inequalities for multilinear forms with applications to zero-one laws for Lévy chaos. Ann. Probab. 24, 422–437 (1996)

    MathSciNet  MATH  Google Scholar 

  47. Serfling, R.J.: Approximation Theorems of Mathematical Statistics. Wiley Series in Probability and Mathematical Statistics. Wiley, Hoboken (1980)

    MATH  Google Scholar 

  48. Silverman, B.W.: Limit theorems for dissociated random variables. Adv. Appl. Probab. 8, 806–819 (1976)

    MathSciNet  MATH  Google Scholar 

  49. Stein, C.: A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, vol. II: Probability Theory, pp. 583–602. Univ. California Press (1982)

  50. Stein, C.: Approximate Computation of Expectations, Institute of Mathematical Statistics Lecture Notes—Monograph Series, vol. 7. Hayward, CA (1986)

  51. Vu, V.: Concentration and Anti-concentration. https://www.ima.umn.edu/2014-2015/W9.8-12.14/21252

  52. Wald, A., Wolfowitz, J.: Statistical tests based on permutation of the observations. Ann. Math. Stat. 15, 358–372 (1944)

    MathSciNet  MATH  Google Scholar 

  53. Zhao, L., Chen, X.: Normal approximation for finite-population U-statistics. Acta Math. Appl. Sin. 6, 263–272 (1990)

    MathSciNet  MATH  Google Scholar 

  54. Zhao, L., Bai, Z., Chao, C.-C., Liang, W.-Q.: Error bound in a central limit theorem of double-indexed permutation statistics. Ann. Stat. 25, 2210–2227 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees for their comments, remarks and suggestions. The research was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “2nd Call for H.F.R.I. Research Projects to support Faculty Members & Researchers” (Project Number: HFRI-FM20-02717).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Tyros.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Proof of Lemma 7.3

Appendix A. Proof of Lemma 7.3

The argument is an interesting and nontrivial instance of the Stein/Chen method of normal approximation via concentration (see, e.g., [4, Section 6]).

A.1. Recall that nd are positive integers with \(d\geqslant 2\) and \(n\geqslant 4d^2\). We start by setting

$$\begin{aligned} \delta :=16\, \frac{\Lambda }{n} \ \ \ \text { and } \ \ \ \eta _\delta :=\frac{n}{4}\, \mathbb {E}\big [|\Xi _1-\Xi _1'|\cdot \min \{|\Xi _1-\Xi _1'|,\delta \}\, |\, \pi _1\big ]. \end{aligned}$$
(A.1)

Notice that, by (7.6), we have

$$\begin{aligned} \delta \geqslant \frac{n}{4} \, \mathbb {E}\big [|\Xi _1-\Xi _1'|^3\big ]. \end{aligned}$$
(A.2)

Using (7.5), (7.6), (A.2) and the fact that \(\min (\alpha ,\beta )\geqslant \alpha - \frac{\alpha ^2}{4\beta }\) for every \(\alpha \geqslant 0\) and \(\beta >0\), we obtain that

$$\begin{aligned} \mathbb {E}[\eta _\delta ]&= \frac{n}{4}\, \mathbb {E}\big [|\Xi _1-\Xi _1'|\cdot \min \{|\Xi _1-\Xi _1'|,\delta \}\big ] \\&\geqslant \frac{n}{4}\, \mathbb {E}\big [(\Xi _1-\Xi _1')^2\big ] - \frac{n}{16\delta }\, \mathbb {E}\big [|\Xi _1-\Xi _1'|^3\big ] = 1- \frac{n^2}{16^2\Lambda }\, \mathbb {E}\big [|\Xi _1-\Xi _1'|^3\big ] \geqslant \frac{3}{4}. \nonumber \end{aligned}$$
(A.3)

Sublemma A.1 1

We have

$$\begin{aligned} \textrm{Var}(\eta _\delta ) \leqslant 2^9\delta ^2. \end{aligned}$$
(A.4)

We postpone the proof of Sublemma A.1 to the end of this appendix.

A.2. Now let \(z\in \mathbb {R}\) be arbitrary. We will show that the probabilities \({\mathbb {P}}(z-|\Theta |\leqslant \Xi _1\leqslant z)\) and \({\mathbb {P}}\big (z\leqslant \Xi _1 \leqslant z+|\Theta |\big )\) are both upper-bounded by the quantity appearing in the right-hand-side of (7.20); clearly, this is enough to complete the proof. The argument is symmetric, and so we shall focus on bounding the probability \({\mathbb {P}}\big (z\leqslant \Xi _1 \leqslant z+|\Theta |\big )\).

Let \(f_\Theta :\mathbb {R}\rightarrow \mathbb {R}\) be defined by

$$\begin{aligned} f_\Theta (x) :={\left\{ \begin{array}{ll} -\big (\frac{1}{2}|\Theta |+\delta \big ) &{} \text {if } x\leqslant z-\delta , \\ -\frac{1}{2}|\Theta |+x-z &{} \text {if } z-\delta<x<z+|\Theta |+\delta , \\ \frac{1}{2}|\Theta |+\delta &{} \text {if } x\geqslant z+|\Theta |+\delta . \end{array}\right. } \end{aligned}$$
(A.5)

By (\(\mathcal {E}\)4), the pair \((\pi _1,\pi _2)\) is exchangeable. Hence, by (7.1) and (7.19), we have

$$\begin{aligned} \mathbb {E}\big [(\Xi _1'-\Xi _1)\big (f_\Theta (\Xi _1') + f_{\Theta '}(\Xi _1)\big )\big ]=0 \end{aligned}$$
(A.6)

which in turn implies, after adding \(2\,\mathbb {E}\big [(\Xi _1-\Xi _1')f_\Theta (\Xi _1)\big ]\) and multiplying by \(\frac{n}{4}\), that

$$\begin{aligned} \frac{n}{2}\,&\mathbb {E}\big [(\Xi _1-\Xi '_1) f_\Theta (\Xi _1)\big ] \\&\quad = \frac{n}{4}\,\mathbb {E}\big [(\Xi _1'-\Xi _1)\big (f_{\Theta '}(\Xi _1) - f_{\Theta }(\Xi _1)\big )\big ] + \frac{n}{4}\, \mathbb {E}\big [(\Xi _1'-\Xi _1) \big (f_\Theta (\Xi _1') - f_{\Theta }(\Xi _1)\big )\big ]. \nonumber \end{aligned}$$
(A.7)

Moreover, by (7.4), we have

$$\begin{aligned} \frac{n}{2}\, \mathbb {E}\big [(\Xi _1'-\Xi _1)f_\Theta (\Xi _1)\big ] = \frac{n}{2}\, \mathbb {E}\big [ f_\Theta (\Xi _1)\, \mathbb {E}[\Xi _1'-\Xi _1\,|\,\pi _1]\big ] =\mathbb {E}\big [f_\Theta (\Xi _1)\Xi _1\big ]\nonumber \\ \end{aligned}$$
(A.8)

and so, by (7.3), the Cauchy–Schwarz inequality and the fact that \(\Vert f_\Theta \Vert _{L_\infty }\leqslant \delta +\frac{1}{2}|\Theta |\),

$$\begin{aligned} \Big |\frac{n}{2}\,\mathbb {E}\big [(\Xi _1'-\Xi _1)f_\Theta (\Xi _1)\big ]\Big | \leqslant \delta \, \mathbb {E}\big [|\Xi _1|\big ] +\frac{1}{2}\,\mathbb {E}\big [|\Xi _1\Theta |\big ] \leqslant \delta + \frac{1}{2}\, \Vert \Theta \Vert _{L_2}. \end{aligned}$$
(A.9)

By the definition of \(\Theta \) in (7.19), the triangle inequality and (7.7), we thus have

$$\begin{aligned} \Big |\frac{n}{2}\,\mathbb {E}\big [(\Xi _1'-\Xi _1)f_\Theta (\Xi _1)\big ]\Big | \leqslant \delta + e^{d} (2d)!\, \sum _{s=2}^{d}\sqrt{\frac{\beta _2}{n^s}}. \end{aligned}$$
(A.10)

Next observe that \(\Vert f_\Theta - f_{\Theta '}\Vert _{L_{\infty }}\leqslant \frac{1}{2}\,\big ||\Theta |-|\Theta '|\big | \leqslant \frac{1}{2}\,|\Theta -\Theta '|\). Hence,

$$\begin{aligned}&\Big |\frac{n}{4}\,\mathbb {E}\big [(\Xi _1'-\Xi _1)(f_{\Theta '}(\Xi _1) - f_{\Theta }(\Xi _1))\big ]\Big | \leqslant \Big | \frac{n}{8}\, \mathbb {E}\big [|\Xi _1'-\Xi _1|\cdot |\Theta - \Theta '|\big ] \Big |\nonumber \\&\quad \leqslant \frac{n}{8}\, \Vert \Xi _1'-\Xi _1\Vert _{L_2} \Vert \Theta - \Theta '\Vert _{L_2}\nonumber \\ {}&{\mathop {\leqslant }\limits ^{(7.5),(7.19)}}\, \frac{\sqrt{n}}{4} \sum _{s=2}^{d}\Vert \Xi _s-\Xi _s'\Vert _{L_2} \leqslant 2\,d^2e^{d}(2d)!\, \sum _{s=2}^{d}\sqrt{\frac{\beta _2}{n^s}} \end{aligned}$$
(A.11)

where we have used the Cauchy–Schwarz inequality, the triangle inequality and (7.8).

From this point on, the proof proceeds exactly as in [3, Lemma 2.2]. More precisely, in order to estimate the second term of the right-hand-side of (A.7), by the fundamental theorem of calculus, we have

$$\begin{aligned} A:= & {} \frac{n}{4}\, \mathbb {E}\big [(\Xi _1'-\Xi _1) \big (f_\Theta (\Xi _1') - f_{\Theta }(\Xi _1)\big )\big ] = \frac{n}{4}\,\mathbb {E}\Big [(\Xi _1'-\Xi _1) \int _{0}^{\Xi _1'-\Xi _1} \!\! f'_\Theta (\Xi _1+t)\, dt\Big ] \nonumber \\= & {} \frac{n}{4}\, \mathbb {E}\left[ (\Xi _1'-\Xi _1) \int _{-\infty }^{+\infty } f'_\Theta (\Xi _1+t)\, \big (\textbf{1}_{[0,\Xi _1'-\Xi _1]}(t)-\textbf{1}_{[\Xi _1'-\Xi _1,0]}(t)\big )\, dt \right] \end{aligned}$$
(A.12)

with the convention that \(\textbf{1}_{[\beta ,\alpha ]}\) is constantly 0 if \(\alpha <\beta \). Also observe that, by (A.5), we have \(f'_\Theta =\textbf{1}_{[z-\delta ,z+\delta +|\Theta |]}\) which implies that for every \(t\in \mathbb {R}\),

  • \((\Xi _1'-\Xi _1)\,f'_\Theta (\Xi _1+t)\, \big (\textbf{1}_{[0,\Xi _1'-\Xi _1]}(t)-\textbf{1}_{[\Xi _1'-\Xi _1,0]}(t)\big ) \geqslant 0\).

Therefore,

$$\begin{aligned} A \geqslant \frac{n}{4}\, \mathbb {E}\Big [\int _{|t|\leqslant \delta } (\Xi _1'-\Xi _1)\, \textbf{1}_{[z-\delta ,z+\delta +|\Theta |]}(\Xi _1+t)\, \big (\textbf{1}_{[0,\Xi _1'-\Xi _1]}(t)-\textbf{1}_{[\Xi _1'-\Xi _1,0]}(t)\big )\, dt\Big ].\nonumber \\ \end{aligned}$$
(A.13)

Moreover, for every \(|t|\leqslant \delta \) we have

  • \((\Xi _1'-\Xi _1)\, \big (\textbf{1}_{[0,\Xi _1'-\Xi _1]}(t)-\textbf{1}_{[\Xi _1'-\Xi _1,0]}(t)\big )\geqslant 0\) and

  • \(\textbf{1}_{[z-\delta ,z+\delta +|\Theta |]}(\Xi _1+t) \geqslant \textbf{1}_{[z,z+|\Theta |]}(\Xi _1)\),

and so, by (A.13),

$$\begin{aligned}&A \geqslant \frac{n}{4}\, \mathbb {E}\Big [ \textbf{1}_{[z,z+|\Theta |]}(\Xi _1)\, (\Xi _1'-\Xi _1) \int _{|t|\leqslant \delta } \big (\textbf{1}_{[0,\Xi _1'-\Xi _1]}(t)-\textbf{1}_{[\Xi _1'-\Xi _1,0]}(t)\big )\, dt\Big ] \\&\quad = \frac{n}{4}\, \mathbb {E}\big [ \textbf{1}_{[z,z+|\Theta |]}(\Xi _1)\, |\Xi _1'-\Xi _1|\cdot \min \big \{\delta ,|\Xi _1'-\Xi _1|\big \}\big ] \nonumber \\&\quad {\mathop {=}\limits ^{A.1}} \mathbb {E}\big [\textbf{1}_{[z,z+|\Theta |]}(\Xi _1)\,\eta _\delta \big ] \geqslant \mathbb {E}\big [\textbf{1}_{[z,z+|\Theta |]}(\Xi _1)\big ]\, \mathbb {E}[\eta _\delta ] - \big |\mathbb {E}\big [\textbf{1}_{[z,z+|\Theta |]}(\Xi _1)\big (\eta _\delta -\mathbb {E}[\eta _\delta ]\big )\big ]\big | \nonumber \\&\quad {\mathop {\geqslant }\limits ^{(A.3)}} \frac{3}{4}\,{\mathbb {P}}\big (z\leqslant \Xi _1\leqslant z+|\Theta |\big ) - \big |\mathbb {E}\big [\textbf{1}_{[z,z+|\Theta |]}(\Xi _1)\big (\eta _\delta -\mathbb {E}[\eta _\delta ]\big )\big ]\big |. \nonumber \end{aligned}$$
(A.14)

On the other hand, by Sublemma 1 and inequality \(\alpha \beta \leqslant \frac{1}{2}\,(\alpha ^2+\beta ^2)\) applied for “\(\alpha =\frac{1}{\sqrt{2}}\,\textbf{1}_{[z,z+|\Theta |]}(\Xi _1)\)" and “\(\beta = \sqrt{2}\,(\eta _\delta -\mathbb {E}[\eta _\delta ])\)", we see that

$$\begin{aligned} \mathbb {E}\big [\textbf{1}_{[z,z+|\Theta |]}(\Xi _1)\big (\eta _\delta -\mathbb {E}[\eta _\delta ]\big )\big ]&\leqslant \frac{1}{2}\, \Big ( \frac{1}{2}\, {\mathbb {P}}\big (z\leqslant \Xi _1\leqslant z+|\Theta |\big ) + 2 \textrm{Var}(\eta _\delta ) \Big ) \\&\leqslant \frac{1}{4}\, {\mathbb {P}}\big (z\leqslant \Xi _1\leqslant z+|\Theta |\big ) + 2^9\delta ^2. \nonumber \end{aligned}$$
(A.15)

Thus, by (A.14) and (A.15), we have

$$\begin{aligned} A\geqslant \frac{1}{2}\, {\mathbb {P}}\big (z\leqslant \Xi _1\leqslant z+|\Theta |\big ) - 2^9\delta ^2. \end{aligned}$$
(A.16)

Invoking the choice of \(\delta \) in (A.1) and the choice of A in (A.12) and combining (A.7), (A.10), (A.11) and (A.16), we conclude that

$$\begin{aligned} {\mathbb {P}}\big (z\leqslant \Xi _1\leqslant z + |\Theta |\big ) \leqslant 2^5\frac{\Lambda }{n}+2^{17} \frac{\Lambda ^2}{n^2} + 5d^2 e^d (2d)! \sum _{s=2}^{d}\sqrt{\frac{\beta _2}{n^s}}. \end{aligned}$$
(A.17)

1.1 A.3 Proof of Sublemma A.1

Let \(\varvec{\zeta }:[n]^2\times [n]^2\rightarrow \mathbb {R}\) be defined by setting

$$\begin{aligned}&\varvec{\zeta }(i,j,p,q) :=|\varvec{\xi }_1(i,p) + \varvec{\xi }_1(j,q) - \varvec{\xi }_1(i,q) - \varvec{\xi }_1(j,p)| \ \times \\&\quad \times \min \big \{|\varvec{\xi }_1(i,p) + \varvec{\xi }_1(j,q) -\varvec{\xi }_1(i,q) - \varvec{\xi }_1(j,p)|, \delta \big \} \nonumber \end{aligned}$$
(A.18)

for every \(i,j,p,q\in [n]\) with \(i\ne j\) and \(p\ne q\); otherwise, set \(\varvec{\zeta }(i,j,p,q)=0\). Then observe that, by the choice of \(\eta _{\delta }\) in (A.1), we have

$$\begin{aligned} \eta _\delta = \frac{n}{4}\, \mathbb {E}\big [ |\Xi _1-\Xi _1'| \cdot \min \big \{|\Xi _1-\Xi _1'|,\delta \big \}\, |\, \pi _1\big ] = \frac{1}{4n}\, \sum _{\begin{array}{c} i,j\in [n]\\ i\ne j \end{array}} \varvec{\zeta }\big (i,j,\pi _1(i),\pi _1(j)\big ).\nonumber \\ \end{aligned}$$
(A.19)

Also recall that, by (\(\mathcal {E}\)3), \(\pi _1\) is uniformly distributed on \(\mathbb {S}_n\). Thus, (A.19) asserts the random variable \(\eta _\delta \) can be expressed as the Z-statistic of order two associated with the tensor \(\varvec{\zeta }\) which has a rather special form.

The proof is based on a specific decomposition of this Z-statistic. This decomposition, also introduced by Barbour and Chen [3], is less symmetric than the decomposition described in Sect. 9 (yet it has enough symmetries in order to be computationally useful), but it has the advantage that its non-constant components are mean zero random variables. Of course, this property is very useful for computing the variance. For the convenience of the reader we shall briefly recall this decomposition; for more information we refer to [3].

Specifically, for every \(i,j,p,q\in [n]\) set

$$\begin{aligned}{} & {} \varvec{\zeta }(i,j,\cdot ,q) :=\frac{1}{n-1}\sum _{\begin{array}{c} r\in [n]\\ r\ne q \end{array}} \varvec{\zeta }(i,j,r,q), \\ {}{} & {} \varvec{\zeta }(i,j,p,\cdot ) :=\frac{1}{n-1}\sum _{\begin{array}{c} r\in [n]\\ r\ne p \end{array}} \varvec{\zeta }(i,j,p,r), \\{} & {} \varvec{\zeta }(i,j,\cdot ,\cdot ) :=\frac{1}{n(n-1)} \sum _{\begin{array}{c} r,s\in [n]\\ r\ne s \end{array}} \varvec{\zeta }(i,j,r,s), \\{} & {} \varvec{\zeta }(i,\cdot ,p,\cdot ) :=\frac{1}{(n-1)^2} \sum _{\begin{array}{c} r,s\in [n]\\ r\ne i,s\ne p \end{array}} \varvec{\zeta }(i,r,p,s),\\{} & {} \! \varvec{\zeta }(i,\cdot ,\cdot ,\cdot ) :=\frac{1}{n(n-1)^2} \sum _{\begin{array}{c} r,s,\ell \in [n]\\ \ell \ne i,r\ne s \end{array}} \! \varvec{\zeta }(i,\ell ,r,s), \\{} & {} \varvec{\zeta }(\cdot ,j,\cdot ,q) :=\frac{1}{(n-1)^2} \sum _{\begin{array}{c} r,s\in [n]\\ r\ne j,s\ne q \end{array}} \! \varvec{\zeta }(r,j,s,q), \\{} & {} \varvec{\zeta }(\cdot ,j,\cdot ,\cdot ) :=\frac{1}{n(n-1)^2} \sum _{\begin{array}{c} r,s,\ell \in [n]\\ \ell \ne j,r\ne s \end{array}} \!\varvec{\zeta }(\ell ,j,r,s), \\{} & {} \varvec{\zeta }(\cdot ,\cdot ,\cdot ,\cdot ) :=\frac{1}{n^2(n-1)^2} \sum _{\begin{array}{c} r,s,k,\ell \in [n]\\ r\ne s,k\ne \ell \end{array}} \! \varvec{\zeta }(r,s,k,\ell ). \end{aligned}$$

Then, for every \(i,j,p,q\in [n]\) we define

$$\begin{aligned} \varvec{\zeta }_D(i,j,p,q)&:=\varvec{\zeta }(i,j,p,q) - \varvec{\zeta }(i,j,\cdot ,q)-\varvec{\zeta }(i,j,p,\cdot ) +\varvec{\zeta }(i,j,\cdot ,\cdot ) \end{aligned}$$
(A.20)
$$\begin{aligned} \varvec{\zeta }_D(i,\cdot ,p,\cdot )&:=\varvec{\zeta }(i,\cdot ,p,\cdot ) - \varvec{\zeta }(i,\cdot ,\cdot ,\cdot ) \end{aligned}$$
(A.21)
$$\begin{aligned} \varvec{\zeta }_D(\cdot ,j,\cdot ,q)&:=\varvec{\zeta }(\cdot ,j,\cdot ,q) - \varvec{\zeta }(\cdot ,j,\cdot ,\cdot ). \end{aligned}$$
(A.22)

Notice that for every \(i,p,q\in [n]\) we have \(\varvec{\zeta }_D(i,i,p,q)=0\); moreover, for every \(i,j\in [n]\),

$$\begin{aligned} \sum _{\begin{array}{c} p,q\in [n]\\ p\ne q \end{array}}\varvec{\zeta }_D(i,j,p,q) = 0, \ \ \ \ \sum _{p=1}^{n}\varvec{\zeta }_D(i,\cdot ,p,\cdot )=0 \ \ \text { and } \ \ \sum _{p=1}^{n}\varvec{\zeta }_D(\cdot ,i,\cdot ,p)=0.\nonumber \\ \end{aligned}$$
(A.23)

By (A.19) and the previous definitions, we may decompose \(\eta _\delta \) as

$$\begin{aligned} \eta _\delta&= \frac{1}{4n} \sum _{\begin{array}{c} i,j\in [n]\\ i\ne j \end{array}} \varvec{\zeta }_D\big (i,j,\pi _1(i),\pi _1(j)\big ) + \frac{n-1}{4n}\sum _{i=1}^{n}\varvec{\zeta }_D \big (\cdot ,i,\cdot ,\pi _1(i)\big ) \ \\&\quad + \frac{n-1}{4n}\sum _{i=1}^{n}\varvec{\zeta }_D\big (i,\cdot ,\pi _1(i),\cdot \big ) +\frac{n-1}{4}\varvec{\zeta }(\cdot ,\cdot ,\cdot ,\cdot ). \nonumber \end{aligned}$$
(A.24)

Invoking (A.23) and the fact that \(\pi _1\) is uniformly distributed on \(\mathbb {S}_n\) we see, in particular, that \(\mathbb {E}[\eta _\delta ] = \frac{n-1}{4}\varvec{\zeta }(\cdot ,\cdot ,\cdot ,\cdot )\). Therefore,

$$\begin{aligned} \textrm{Var}(\eta _\delta )&\leqslant \frac{3}{2^4n^2}\, \mathbb {E}\Big [\Big (\sum _{\begin{array}{c} i,j\in [n]\\ i\ne j \end{array}} \varvec{\zeta }_D\big (i,j,\pi _1(i),\pi _1(j)\big )\Big )^2\Big ] \, \\&\quad + \frac{3}{2^4}\, \mathbb {E}\Big [\Big (\sum _{i=1}^{n}\varvec{\zeta }_D \big (\cdot ,i,\cdot ,\pi _1(i)\big )\Big )^2\Big ] + \frac{3}{2^4}\, \mathbb {E}\Big [\Big (\sum _{i=1}^{n} \varvec{\zeta }_D\big (i,\cdot ,\pi _1(i),\cdot \big )\Big )^2\Big ] \nonumber \\&:=E_1 +E_2 +E_3. \nonumber \end{aligned}$$
(A.25)

Finally, using the Cauchy–Schwarz inequality, (A.23) and arguingFootnote 20 as in Sect. 5.6, it is not hard to verify that

$$\begin{aligned} E_1\leqslant \Big (\frac{2^63}{n}+2^63\Big )\delta ^2, \ \ \ \ E_2\leqslant 2^3 3\delta ^2 \ \ \text { and } \ \ E_3\leqslant 2^3 3\delta ^2. \end{aligned}$$
(A.26)

By (A.25), (A.26) and the fact that \(n\geqslant 3\), we conclude that (A.4) is satisfied.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dodos, P., Tyros, K. Anticoncentration and Berry–Esseen bounds for random tensors. Probab. Theory Relat. Fields 187, 317–384 (2023). https://doi.org/10.1007/s00440-023-01211-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-023-01211-x

Keywords

Mathematics Subject Classification

Navigation