Skip to main content
Log in

Fluctuations of the solutions to the KPZ equation in dimensions three and higher

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We prove, using probabilistic techniques and analysis on the Wiener space, that the large scale fluctuations of the KPZ equation in \(d\ge 3\) with a small coupling constant, driven by a white in time and colored in space noise, are given by the Edwards-Wilkinson model. This gives an alternative proof, that avoids perturbation expansions, to the results of Magnen and Unterberger (J Stat Phys 171:543–598, 2018).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This involves an abuse of notation: we consider \(D_{s,\cdot }Z_\varepsilon (t,x)\) as an element of the Hilbert space \(H_1=L^2(\mathbb {R}^d)\), which is then integrated against the cylindrical white noise \(\dot{W}(s,\cdot )\). The Malliavin derivative at time s is then an element of \(H_1\), which we write as \(D_{s,y}Z_\varepsilon (t,x)\). See e.g. [29] for background.

References

  1. Alberts, T., Khanin, K., Quastel, J.: The intermediate disorder regime for directed polymers in dimension \(1+ 1\). Ann. Probab. 42, 1212–1256 (2014)

    Article  MathSciNet  Google Scholar 

  2. Amir, G., Corwin, I., Quastel, J.: Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions. Commun. Pure Appl. Math. 64, 466–537 (2011)

    Article  MathSciNet  Google Scholar 

  3. Bertini, L., Giacomin, G.: Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183, 571–607 (1997)

    Article  MathSciNet  Google Scholar 

  4. Bertini, L., Cancrini, N.: The two-dimensional stochastic heat equation: renormalizing a multiplicative noise. J. Phys. A Math. General 31, 615 (1998)

    Article  MathSciNet  Google Scholar 

  5. Betz, V., Spohn, H.: A central limit theorem for Gibbs measures relative to Brownian motion. Prob. Theory Rel. Fields 131, 459–478 (2005)

    Article  MathSciNet  Google Scholar 

  6. Bolthausen, E.: A note on the diffusion of directed polymers in a random environment. Commun. Math. Phys. 123, 529–534 (1989)

    Article  MathSciNet  Google Scholar 

  7. Caravenna, F., Sun, R., Zygouras, N.: Universality in marginally relevant disordered systems. Ann. Appl. Prob. 27, 3050–3112 (2017)

    Article  MathSciNet  Google Scholar 

  8. Caravenna, F., Sun, R., Zygouras, N.: On the moments of the \((2+1)\)-dimensional directed polymer and stochastic heat equation in the critical window, arXiv:1808.03586 (2018)

  9. Caravenna, F., Sun, R., Zygouras, N.: The two-dimensional KPZ equation in the entire subcritical regime, arXiv:1812.03911 (2018)

  10. Chatterjee, S., Dunlap, A.: Constructing a solution of the \((2+ 1) \)-dimensional KPZ equation, arXiv preprint arXiv:1809.00803 (2018)

  11. Chatterjee, S.: Fluctuations of eigenvalues and second order Poincaré inequalities. Probab. Theory Relat. Fields 143, 1–40 (2009)

    Article  Google Scholar 

  12. Comets, F., Cosco, C., Mukherjee, C.: Fluctuation and rate of convergence for the stochastic heat equation in weak disorder, arXiv preprint arXiv:1807.03902 (2018)

  13. Comets, F.: Directed Polymers in Random Environments. Lecture Notes in Mathematics, vol. 2175. Springer, Cham (2017)

    Book  Google Scholar 

  14. Comets, F., Liu, Q.: Rate of convergence for polymers in a weak disorder. J. Math. Anal. Appl. 455, 312–335 (2017)

    Article  MathSciNet  Google Scholar 

  15. Corwin, I.: The Kardar–Parisi–Zhang equation and universality class. Rand. Matrices Theory Appl. 1, 1130001 (2012)

    Article  MathSciNet  Google Scholar 

  16. Dunlap, A., Gu, Y., Ryzhik, L., Zeitouni, O.: The random heat equation in dimensions three and higher: the homogenization viewpoint, arXiv preprint arXiv:1808.07557 (2018)

  17. Feng, Z.S.: Rescaled Directed Random Polymer in Random Environment in Dimension 1+ 2, PhD thesis, University of Toronto (Canada) (2016)

  18. Gu, Y., Ryzhik, L., Zeitouni, O.: The Edwards–Wilkinson limit of the random heat equation in dimensions three and higher. Commun. Math. Phys. 363, 351–388 (2018)

    Article  MathSciNet  Google Scholar 

  19. Gubinelli, M.: Gibbs measures for self-interacting Wiener paths. Markov Proc. Rel. Fields 12, 747–766 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Gubinelli, M., Imkeller, P., Perkowski, N.: Paracontrolled Distributions and Singular PDEs in Forum of Mathematics, vol. 3, p. e6. Cambridge University Press, Cambridge (2015)

    MATH  Google Scholar 

  21. Gubinelli, M., Perkowski, N.: KPZ reloaded. Commun. Math. Phys. 349, 165–269 (2017)

    Article  MathSciNet  Google Scholar 

  22. Hairer, M.: Solving the KPZ equation. Ann. Math. 178, 559–664 (2013)

    Article  MathSciNet  Google Scholar 

  23. Hairer, M.: A theory of regularity structures. Inv. Math. 198, 269–504 (2014)

    Article  MathSciNet  Google Scholar 

  24. Hu, Y., Lê, K.: Asymptotics of the density of parabolic Anderson random fields, arXiv preprint arXiv:1801.03386 (2018)

  25. Imbrie, J.Z., Spencer, T.: Diffusion of directed polymers in a random environment. J. Stat. Phys. 52, 609–626 (1988)

    Article  MathSciNet  Google Scholar 

  26. Kupiainen, A.: Renormalization group and stochastic PDEs, in Annales Henri Poincaré, vol. 17, pp. 497–535. Springer, Berlin pp (2016)

    MATH  Google Scholar 

  27. Magnen, J., Unterberger, J.: The scaling limit of the KPZ equation in space dimension 3 and higher. J. Stat. Phys. 171, 543–598 (2018)

    Article  MathSciNet  Google Scholar 

  28. Matetski, K., Quastel, J., Remenik, D.: The KPZ fixed point, arXiv preprint arXiv:1701.00018 (2016)

  29. Mayer-Wolf, E., Zakai, M.: The Clark–Ocone formula for vector valued Wiener functionals. J. Funct. Anal. 229, 143–154 (2005)

    Article  MathSciNet  Google Scholar 

  30. Meerson, B., Sasorov, P., Vilenkin, A.: Nonequilibrium steady state of a weakly-driven Kardar-Parisi-Zhang equation. J. Stat. Mech. Theory Exp. 2018, 053201 (2008)

    Article  MathSciNet  Google Scholar 

  31. Mukherjee, C.: A central limit theorem for the annealed path measures for the stochastic heat equation and the continuous directed polymer in \( d\ge 3\), arXiv preprint arXiv:1706.09345 (2017)

  32. Mukherjee, C., Broeker, Y.: Quenched central limit theorem for the stochastic heat equation in weak disorder,, arXiv preprint arXiv:1710.00631 (2017)

  33. Mukherjee, C., Shamov, A., Zeitouni, O.: Weak and strong disorder for the stochastic heat equation and continuous directed polymers in \( d\ge 3\). Electr. Comm. Prob. 21, 12 (2016)

    MATH  Google Scholar 

  34. Nourdin, I., Peccati, G., Reinert, G.: Second order Poincaré inequalities and CLTs on Wiener space. J. Funct. Anal. 257, 593–609 (2009)

    Article  MathSciNet  Google Scholar 

  35. Nualart, D.: The Malliavin Calculus and Related Topics, vol. 1995. Springer, Berlin (2006)

    MATH  Google Scholar 

  36. Quastel, J., Spohn, H.: The one-dimensional KPZ equation and its universality class. J. Stat. Phys. 160, 965–984 (2015)

    Article  MathSciNet  Google Scholar 

  37. Toninelli, F.: (2+ 1)-dimensional interface dynamics: mixing time, hydrodynamic limit and anisotropic KPZ growth, arXiv preprint arXiv:1711.05571 (2017)

Download references

Acknowledgements

We thank the two anonymous referees for a very careful reading of the manuscript and many helpful suggestions to improve the presentation. AD was supported by an NSF Graduate Research Fellowship, YG by NSF Grant DMS-1613301/1807748/1907928 and the Center for Nonlinear Analysis of CMU, LR by NSF Grant DMS-1613603 and ONR Grant N00014-17-1-2145, and OZ by an Israel Science Foundation grant and funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (Grant Agreement No. 692452).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Gu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Auxiliary lemmas

Lemma A.1

For any \(t>0,x\in \mathbb {R}^d\), we have

$$\begin{aligned} D\log Z(t,x)=\frac{DZ(t,x)}{Z(t,x)}\in L^2(\Omega ;H). \end{aligned}$$

Proof

Recall that

so, for each t and x fixed, we have

(A.1)

for any \(n\in \mathbb {Z}_+\), where we recall that H is the \(L^2(\mathbb {R}^{d+1})\)-space with respect to the sy-variables. To deal with the logarithm function, which is singular at the origin and grows at infinity, we use an approximation \(f_n\in \mathcal {C}_c^\infty (\mathbb {R})\) such that \(f_n(x)=\log x\) for \(x\in [1/n,n]\) and \(|f_n'(x)|\le |x|^{-1}\). It is clear that

$$\begin{aligned} D f_n(Z(t,x))=f_n'(Z(t,x)) DZ(t,x)\in L^2(\Omega ; H), \end{aligned}$$

and the error

as \(n\rightarrow \infty \), where we used Proposition 2.3 in the last step, together with (A.1). By [35, Proposition 1.2.1], the proof is complete. \(\square \)

Lemma A.2

There exists \(\beta _0>0\) such that if \(\beta <\beta _0\), we have in \(d\ge 3\) that

$$\begin{aligned} \sup _{x\in \mathbb {R}^d} \mathbb {E}_B\left[ \exp \left\{ \beta \int _0^\infty R(x+B_s)ds\right\} \right] <\infty , \end{aligned}$$
(A.2)

and

$$\begin{aligned} \sup _{t>0, x,y\in \mathbb {R}^d} \mathbb {E}_B\left[ \exp \left\{ \beta \int _0^t R(x+B_s)ds\right\} \bigg | B_t=y\right] <\infty . \end{aligned}$$
(A.3)

Proof

The statement in (A.2) follows from Portenko’s lemma, see [33, (3.1), (3.2)].

We turn to proving (A.3). Conditioned on \(B_t=y\), the process \(\{B_s\}_{s\le t}\) is a Brownian bridge. In particular, it has a Markovian representation. Thus, again by Portenko’s lemma, it is enough to show that

$$\begin{aligned} \beta \sup _{t>0, x,y\in \mathbb {R}^d} \mathbb {E}_B\left[ \int _0^{t} R(x+B_s)ds \bigg | B_t=y\right] < 1, \end{aligned}$$
(A.4)

for all \(\beta \) small enough. By symmetry, as \(X_s\) is a Brownian bridge, it suffices to show that

$$\begin{aligned} \sup _{t>0, x,y\in \mathbb {R}^d} \mathbb {E}_B\left[ \int _0^{t/2} R(x+B_s)ds \bigg | B_t=y\right] < \infty . \end{aligned}$$
(A.5)

Note that \(X_s\) has mean sy / t and variance \(s(t-s)/t\), which in our range is larger than Cs. In particular, for \(s\le t/2\), we have

$$\begin{aligned} \sup _{x,y\in \mathbb {R}^d}\mathbb {P}_B\left[ |B_s-x|\le 1\bigg | B_t=y\right] \le C{(1+}s)^{-d/2}. \end{aligned}$$

Since \(s^{-d/2}\) is integrable as \(s\rightarrow +\infty \), this yields (A.5) and completes the proof of the lemma. \(\square \)

Lemma A.3

Let B be a standard Brownian motion in \(d\ge 3\). For any \(\alpha \in (0,2)\), \(t>0\) and compact set \(A\subset \mathbb {R}^d\) with \(0\notin A\), we have

$$\begin{aligned} \sup _{w\in A}\mathbb {E}_{B}\left[ \left( \int _{t/\varepsilon ^\alpha }^{t/\varepsilon ^2}R(B_s)ds\right) ^2 \,\bigg |\, B_{t/\varepsilon ^2}=\frac{w}{\varepsilon }\right] \lesssim \varepsilon ^{\alpha \left( \frac{d}{2}-1\right) }. \end{aligned}$$

Proof

By a direct calculation, we have

$$\begin{aligned} \begin{aligned}&\mathbb {E}_{B}\left[ \left( \int _{t/\varepsilon ^\alpha }^{t/\varepsilon ^2}R(B_s)ds\right) ^2 \,\bigg |\, B_{t/\varepsilon ^2}=\frac{w}{\varepsilon }\right] \\&\quad =2\int _{[t/\varepsilon ^\alpha \le s_1 \le s_2 \le t/\varepsilon ^2]}\int _{\mathbb {R}^{2d}}R(x)R(y)G_{s_1}(x)G_{s_2-s_1}(y-x)G_{t/\varepsilon ^2-s_2}\\&\qquad \left( \frac{w}{\varepsilon }-y\right) G_{t/\varepsilon ^2}\left( \frac{w}{\varepsilon }\right) ^{-1}dxdyds_1ds_2. \end{aligned} \end{aligned}$$

By the fact that \(w\in A\) and \(0\notin A\), we have

$$\begin{aligned} \frac{G_{t/\varepsilon ^2-s_2}\left( \frac{w}{\varepsilon }-y\right) }{G_{t/\varepsilon ^2}\left( \frac{w}{\varepsilon }\right) }=\frac{G_{t-\varepsilon ^2s_2}(w-\varepsilon y)}{G_t(w)} \lesssim 1, \end{aligned}$$

uniformly in \(s_2\le t/\varepsilon ^2, w\in A, \, y\in \mathrm {supp}(R)\) and \(\varepsilon \ll 1\). This shows that we can remove the conditional expectation and derive

$$\begin{aligned} \sup _{w\in A} \mathbb {E}_{B}\left[ \left( \int _{t/\varepsilon ^\alpha }^{t/\varepsilon ^2}R(B_s)ds\right) ^2 \,\bigg |\, B_{t/\varepsilon ^2}=\frac{w}{\varepsilon }\right] \lesssim \mathbb {E}_B\left[ \left( \int _{t/\varepsilon ^\alpha }^{t/\varepsilon ^2}R(B_s)ds\right) ^2\right] \lesssim \varepsilon ^{\alpha \left( \frac{d}{2}-1\right) }, \end{aligned}$$

which completes the proof. \(\square \)

Negative moments of Z(tx)

We now prove Proposition 2.3. The goal is to show there exists \(\beta _0>0\) such that if \(\beta <\beta _0\) and \(n\in \mathbb {Z}_+\), we have

$$\begin{aligned} \sup _{t>0} \mathbb {E}[ Z(t,x)^{-n}] \le C_{\beta ,n}, \end{aligned}$$
(B.1)

with some constant \(C_{\beta ,n}>0\). We adapt to our setting the proof of [24, Corollary 4.8], which deals with the case when the noise is also singular in space. The same proof applies to our situation, and we only present the details for the convenience of the readers.

Since Z(tx) has the same distribution as u(tx), it suffices to estimate the small ball probability \(\mathbb {P}[u(t,x)\le r]\) for \(r\ll 1\). We define an approximation of the spacetime white noise

$$\begin{aligned} W_\varepsilon (t,x)=e^{-\varepsilon (t^2+|x|^2)}\int _{\mathbb {R}^{d+1}} \phi _\varepsilon (t-s,x-y)dW(s,y), \end{aligned}$$

where \(\phi _\varepsilon (t,x)=\varepsilon ^{-d-2}\phi (t/\varepsilon ^2,x/\varepsilon )\) with \(\phi \in \mathcal {C}_c^\infty (\mathbb {R}^{d+1})\) such that \(\phi \ge 0\) is even and \(\Vert \phi \Vert _{L^1}=1\). It is clear that for fixed \(\varepsilon >0\), \(W_\varepsilon \in L^2(\mathbb {R}^{d+1})\cap \mathcal {C}^\infty (\mathbb {R}^{d+1})\) almost surely. We will use \(\Vert \cdot \Vert _2\) to denote the \(L^2(\mathbb {R}^{d+1})\) norm. Define

$$\begin{aligned} V_\varepsilon (t,x)=\int _{\mathbb {R}^d} \varphi (x-y)W_\varepsilon (t,y)dy, \ \ \mathscr {R}_\varepsilon (t,s,x,y)=\mathbb {E}[V_\varepsilon (t,x)V_\varepsilon (s,y)], \end{aligned}$$

and

$$\begin{aligned} \mathscr {U}_\varepsilon (t,x)=\mathbb {E}_B\left[ e^{\mathcal {V}_t^\varepsilon (B) }\right] , \end{aligned}$$

with

$$\begin{aligned} \mathcal {V}_t^\varepsilon (B)=\beta \int _0^t V_\varepsilon (t-s,x+B_s)ds-\frac{1}{2}\beta ^2\mathcal {Q}_\varepsilon (t,x,x,B,B), \end{aligned}$$

where

$$\begin{aligned} \mathcal {Q}_\varepsilon (t,x,y,B^1,B^2)=\int _0^t\int _0^t \mathscr {R}_\varepsilon (t-s,t-\ell ,x+B_s^1,y+B_{\ell }^2)dsd\ell . \end{aligned}$$

By [24, Proposition 4.2], \(\mathscr {U}_\varepsilon (t,x)\rightarrow u(t,x)\) in probability so we only need to estimate \(\mathbb {P}[\mathscr {U}_\varepsilon (t,x)\le r]\) for \(r\ll 1\).

With any given \(W_\varepsilon \), define the expectation

$$\begin{aligned} \mathbb {E}^{W_\varepsilon }_B[ F(B^1,B^2)]=\frac{\mathbb {E}_B[ F(B^1,B^2)e^{\mathcal {V}_t^\varepsilon (B^1)+\mathcal {V}_t^\varepsilon (B^2)}]}{\mathbb {E}_B[ e^{\mathcal {V}_t^\varepsilon (B^1)+\mathcal {V}_t^\varepsilon (B^2)}]}. \end{aligned}$$

To emphasize the dependence of \(\mathscr {U}_\varepsilon \) on \(W_\varepsilon \), we write \(\mathscr {U}_\varepsilon (t,x)=\mathscr {U}_\varepsilon (t,x,W_\varepsilon )\). For any \(\lambda >0\), define the set

$$\begin{aligned} A_\lambda (t,x)=\left\{ W_\varepsilon : \mathscr {U}_\varepsilon (t,x,W_\varepsilon )>\frac{1}{2}, \int _0^t\mathbb {E}_B^{W_\varepsilon }[ R(B^1_s-B^2_s)]ds\le \lambda \right\} . \end{aligned}$$

Lemma B.1

For any \(\tilde{W}_\varepsilon \in A_\lambda (t,x)\), we have

$$\begin{aligned} \mathscr {U}_\varepsilon (t,x,W_\varepsilon )\ge \frac{1}{2}e^{-\sqrt{\lambda } \Vert W_\varepsilon -\tilde{W}_\varepsilon \Vert _2}, \end{aligned}$$

with \(\Vert \cdot \Vert _2\) denoting the \(L^2(\mathbb {R}^{d+1})\) norm.

Proof

We write

$$\begin{aligned} \begin{aligned} \mathscr {U}_\varepsilon (t,x,W_\varepsilon )=\mathbb {E}_B[ e^{\mathcal {V}_t^\varepsilon (B)}]&=\mathbb {E}_B[e^{{\tilde{\mathcal {V}}}_t^\varepsilon (B)}] \frac{ \mathbb {E}_B[e^{\mathcal {V}_t^\varepsilon (B)-{\tilde{\mathcal {V}}}_t^\varepsilon (B)} e^{{\tilde{\mathcal {V}}}_t^\varepsilon (B)}]}{\mathbb {E}_B[ e^{{\tilde{\mathcal {V}}}_t^\varepsilon (B)}]}\\&=\mathscr {U}_\varepsilon (t,x,\tilde{W}_\varepsilon ) \mathbb {E}_B^{\tilde{W}_\varepsilon }[ e^{\mathcal {V}_t^\varepsilon (B)-{\tilde{\mathcal {V}}}_t^\varepsilon (B)}], \end{aligned} \end{aligned}$$

where \({\tilde{\mathcal {V}}}_t^\varepsilon \) is obtained by replacing \(W_\varepsilon \mapsto \tilde{W}_\varepsilon \) in the expression of \(\mathcal {V}_t^\varepsilon \). Since \(\tilde{W}_\varepsilon \in A_\lambda \), by Jensen’s inequality we have

$$\begin{aligned} \mathscr {U}_\varepsilon (t,x,W_\varepsilon )\ge \frac{1}{2} \exp \left( \mathbb {E}_B^{\tilde{W}_\varepsilon }[\mathcal {V}_t^\varepsilon (B)-{\tilde{\mathcal {V}}}_t^\varepsilon (B)]\right) . \end{aligned}$$

It remains to show that

$$\begin{aligned} |\mathbb {E}_B^{\tilde{W}_\varepsilon }[\mathcal {V}_t^\varepsilon (B)-{\tilde{\mathcal {V}}}_t^\varepsilon (B)]| \le \sqrt{\lambda }\Vert W_\varepsilon -\tilde{W}_\varepsilon \Vert _2. \end{aligned}$$
(B.2)

We write

$$\begin{aligned} \begin{aligned} \mathcal {V}_t^\varepsilon (B)-{\tilde{\mathcal {V}}}_t^\varepsilon (B)&=\beta \int _0^t [V_\varepsilon (t-s,x+B_s)-\tilde{V}_\varepsilon (t-s,x+B_s)]ds\\&=\beta \int _0^t\int _{\mathbb {R}^d} \varphi (x+B_s-y)[W_\varepsilon (t-s,y)-\tilde{W}_\varepsilon (t-s,y)]dyds, \end{aligned} \end{aligned}$$

and apply the Cauchy-Schwarz inequality to get

$$\begin{aligned} \begin{aligned} |\mathbb {E}_B^{\tilde{W}_\varepsilon }[\mathcal {V}_t^\varepsilon (B)-{\tilde{\mathcal {V}}}_t^\varepsilon (B)]|&\le \beta \Vert W_\varepsilon -\tilde{W}_\varepsilon \Vert _2\sqrt{\int _0^t \int _{\mathbb {R}^d} |\mathbb {E}_B^{\tilde{W}_\varepsilon }[\varphi (x+B_s-y)] |^2 dyds} \\&\le \beta \Vert W_\varepsilon -\tilde{W}_\varepsilon \Vert _2\sqrt{\int _0^t \mathbb {E}_B^{\tilde{W}_\varepsilon }[R(B^1_s-B^2_s)]ds}\le \sqrt{\lambda } \Vert W_\varepsilon -\tilde{W}_\varepsilon \Vert _2, \end{aligned} \end{aligned}$$

which completes the proof. \(\square \)

Lemma B.2

There exists universal constants \(\lambda ,c>0\) such that \(\mathbb {P}[A_\lambda (t,x)]\ge c\).

Proof

We have

$$\begin{aligned} \mathbb {P}[A_\lambda (t,x)] \ge \mathbb {P}\left[ \mathscr {U}_\varepsilon (t,x,W_\varepsilon )> \frac{1}{2}\right] -\mathbb {P}[ B_\lambda (t,x)], \end{aligned}$$

with

$$\begin{aligned} B_\lambda (t,x)=\left\{ W_\varepsilon : \mathscr {U}_\varepsilon (t,x,W_\varepsilon )>\frac{1}{2}, \int _0^t\mathbb {E}_B^{W_\varepsilon }[ R(B^1_s-B^2_s)]ds> \lambda \right\} . \end{aligned}$$

Using the fact that \(\mathbb {E}[\mathscr {U}_\varepsilon (t,x,W_\varepsilon )]=1\) and the Paley–Zygmund’s inequality, we have

$$\begin{aligned} \mathbb {P}\left[ \mathscr {U}_\varepsilon (t,x,W_\varepsilon )>\frac{1}{2}\right] \ge \frac{1}{4\mathbb {E}[\mathscr {U}_\varepsilon (t,x,W_\varepsilon )^2]}=\frac{1}{4\mathbb {E}_B[ e^{\beta ^2 \mathcal {Q}_\varepsilon (t,x,x,B^1,B^2)}]}. \end{aligned}$$

For \(B_\lambda (t,x)\), we have, as \(\mathscr {U}_\varepsilon (t,x,W_\varepsilon )>1/2\),

$$\begin{aligned} \begin{aligned} \mathbb {P}[B_\lambda (t,x)]&\le \mathbb {P}\left[ \int _0^t \mathbb {E}_B[ R(B_s^1-B_s^2) e^{\mathcal {V}_t^\varepsilon (B^1)+\mathcal {V}_t^\varepsilon (B^2)}] ds >\frac{\lambda }{4}\right] \\&\le \frac{4}{\lambda }\mathbb {E}_B\left[ e^{\beta ^2 \mathcal {Q}_\varepsilon (t,x,x,B^1,B^2)}\int _0^t R(B^1_s-B^2_s)ds\right] \\&\le \frac{4C}{\lambda }\mathbb {E}_B\left[ e^{2\beta ^2 \mathcal {Q}_\varepsilon (t,x,x,B^1,B^2)}\right] ^{1/2}, \end{aligned} \end{aligned}$$
(B.3)

with some constant \(C>0\). By Lemma B.3 below and choosing \(\lambda \) large, there exists some constants \(c,\lambda >0\) independent of \(\varepsilon ,t,x\) such that \(\mathbb {P}[A_\lambda (t,x)] \ge c\). \(\square \)

Lemma B.3

There exists \(\beta _0>0\) such that if \(\beta <\beta _0\), we have

$$\begin{aligned} 1\le \mathbb {E}_B\left[ e^{\beta \mathcal {Q}_\varepsilon (t,x,x,B^1,B^2)}\right] \le C_\beta . \end{aligned}$$

Proof

Recall that

$$\begin{aligned} \mathcal {Q}_\varepsilon (t,x,x,B^1,B^2)=\int _0^t\int _0^t \mathscr {R}_\varepsilon (t-s,t-\ell ,x+B_s^1,x+B_{\ell }^2)dsd\ell . \end{aligned}$$

We write \(\mathscr {R}_\varepsilon \) explicitly:

$$\begin{aligned} \begin{aligned} \mathscr {R}_\varepsilon (t_1,t_2,x_1,x_2)&=\int _{\mathbb {R}^{2d}} \varphi (x_1-y_1)\varphi (x_2-y_2)\mathbb {E}[W_\varepsilon (t_1,y_1)W_\varepsilon (t_2,y_2)]dy_1dy_2\\&=\int _{\mathbb {R}^{2d}} \varphi (x_1-y_1)\varphi (x_2-y_2) e^{-\varepsilon (t_1^2+t_2^2+|y_1|^2+|y_2|^2)} \phi _\varepsilon \\&\qquad \star \phi _\varepsilon (t_1-t_2,y_1-y_2) dy_1dy_2\\&\le \int _{\mathbb {R}^{2d}} \varphi (x_1-y_1)\varphi (x_2-y_2) \phi _\varepsilon \star \phi _\varepsilon (t_1-t_2,y_1-y_2) dy_1dy_2, \end{aligned} \end{aligned}$$

with \(\star \) denoting the convolution. By the fact that \(\varphi ,\phi \) have compact supports, we have

for some \(C>0\). Thus, \(\mathcal {Q}_\varepsilon \) is essentially measuring the mutual “intersection” time of \(B^1,B^2\). By [18, Corollary 4.4] and the fact that \(d\ge 3\), the proof is complete. \(\square \)

Now we can write

$$\begin{aligned} \begin{aligned}&\mathbb {P}[\mathscr {U}_\varepsilon (t,x,W_\varepsilon )\le r] \le \mathbb {P}\left[ \frac{1}{2} e^{-\sqrt{\lambda } \mathrm {dist}(W_\varepsilon ,A_\lambda (t,x))}\le r\right] \\&\quad \le \mathbb {P}\left[ \mathrm {dist}(W_\varepsilon ,A_\lambda (t,x)) \ge \frac{\log (2r)^{-1}}{\sqrt{\lambda }} \right] , \end{aligned} \end{aligned}$$
(B.4)

where \(\mathrm {dist}(W_\varepsilon ,A_\lambda (t,x))=\inf \{ \Vert W_\varepsilon -\tilde{W}_\varepsilon \Vert _2: \tilde{W}_\varepsilon \in A_\lambda (t,x)\}\). Now we can apply [24, Lemma 4.5] to obtain

$$\begin{aligned} \mathbb {P}\left[ \mathrm {dist}(W_\varepsilon ,A_\lambda (t,x)) \ge \tau +2 \sqrt{\log \frac{2}{c}} \right] \le 2e^{-\tau ^2/4} \end{aligned}$$
(B.5)

for all \(\tau >0\), where \(\lambda ,c>0\) are chosen as in Lemma B.2. Combining (B.4) and (B.5), we have

$$\begin{aligned} \mathbb {P}[\mathscr {U}_\varepsilon (t,x,W_\varepsilon )\le r] \le 2\exp \left( -\frac{1}{4}\left( \frac{\log (2r)}{\sqrt{\lambda }}+2\sqrt{\log \frac{2}{c}}\right) ^2\right) , \end{aligned}$$

which implies \(\mathbb {E}[\mathscr {U}_\varepsilon (t,x,W_\varepsilon )^{-n}]\lesssim 1\) and completes the proof of (B.1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunlap, A., Gu, Y., Ryzhik, L. et al. Fluctuations of the solutions to the KPZ equation in dimensions three and higher. Probab. Theory Relat. Fields 176, 1217–1258 (2020). https://doi.org/10.1007/s00440-019-00938-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-019-00938-w

Mathematics Subject Classification

Navigation