Skip to main content

Advertisement

Log in

A large-scale candidate gene association study of age at menarche and age at natural menopause

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Recent genome-wide association (GWA) studies have identified several novel genetic loci associated with age at menarche and age at natural menopause. However, the stringent significance threshold used in GWA studies potentially led to false negatives and true associations may have been overlooked. Incorporating biologically relevant information, we examined whether common genetic polymorphisms in candidate genes of nine groups of biologically plausible pathways and related phenotypes are associated with age at menarche and age at natural menopause. A total of 18,862 genotyped and imputed single nucleotide polymorphisms (SNPs) in 278 genes were assessed for their associations with these two traits among a total of 24,341 women from the Nurses’ Health Study (NHS, N = 2,287) and the Women’s Genome Health Study (WGHS, N = 22,054). Linear regression was used to assess the marginal association of each SNP with each phenotype. We adjusted for multiple testing within each gene to identify statistically significant SNP associations at the gene level. To evaluate the overall evidence for an excess of statistically significant gene associations over the proportion expected by chance, we applied a one-sample test of proportion to each group of candidate genes. The steroid-hormone metabolism and biosynthesis pathway was found significantly associated with both age at menarche and age at natural menopause (P = 0.040 and 0.011, respectively). In addition, the group of genes associated with precocious or delayed puberty was found significantly associated with age at menarche (P = 0.013), and the group of genes involved in premature ovarian failure with age at menopause (P = 0.025).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aulchenko YS, Struchalin MV, van Duijn CM (2010) ProbABEL package for genome-wide association analysis of imputed data. BMC Bioinformatics 11:134

    Google Scholar 

  • Boot AM, van der Sluis IM, de Muinck Keizer-Schrama SM, van Meurs JB, Krenning EP, Pols HA, Uitterlinden AG (2004) Estrogen receptor alpha gene polymorphisms and bone mineral density in healthy children and young adults. Calcif Tissue Int 74:495–500

    Article  CAS  PubMed  Google Scholar 

  • Chie WC, Liu YH, Chi J, Wu V, Chen A (1997) Predictive factors for early menarche in Taiwan. J Formos Med Assoc 96:446–450

    CAS  PubMed  Google Scholar 

  • Colditz GA, Stampfer MJ, Willett WC, Stason WB, Rosner B, Hennekens CH, Speizer FE (1987) Reproducibility and validity of self-reported menopausal status in a prospective cohort study. Am J Epidemiol 126:319–325

    CAS  PubMed  Google Scholar 

  • de Bruin JP, Bovenhuis H, van Noord PA, Pearson PL, van Arendonk JA, te Velde ER, Kuurman WW, Dorland M (2001) The role of genetic factors in age at natural menopause. Hum Reprod 16:2014–2018

    Article  PubMed  Google Scholar 

  • Dvornyk V, Long JR, Liu PY, Zhao LJ, Shen H, Recker RR, Deng HW (2006) Predictive factors for age at menopause in Caucasian females. Maturitas 54:19–26

    Article  PubMed  Google Scholar 

  • Ennis S, Ward D, Murray A (2006) Nonlinear association between CGG repeat number and age of menopause in FMR1 premutation carriers. Eur J Hum Genet 14:253–255

    Article  CAS  PubMed  Google Scholar 

  • Gajdos ZK, Butler JL, Henderson KD, He C, Supelak P, Euyud M (2008) Association studies of common variants in ten hypogonadotropic hypogonadism genes with age at menarche. J Clin Endocrinol Metab 93:4224–4225

    Article  Google Scholar 

  • Gao X, Starmer J, Martin ER (2008) A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet Epidemiol 32:361–369

    Article  PubMed  Google Scholar 

  • Gauvreau K (2006) Hypothesis testing: proportions. Circulation 114:1545–1548

    Article  PubMed  Google Scholar 

  • Gorai I, Tanaka K, Inada M, Morinaga H, Uchiyama Y, Kikuchi R, Chaki O, Hirahara F (2003) Estrogen-metabolizing gene polymorphisms, but not estrogen receptor-alpha gene polymorphisms, are associated with the onset of menarche in healthy postmenopausal Japanese women. J Clin Endocrinol Metab 88:799–803

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Shen H, Xiao P, Xiong DH, Yang TL, Guo YF, Long JR, Recker RR, Deng HW (2006a) Genomewide linkage scan for quantitative trait loci underlying variation in age at menarche. J Clin Endocrinol Metab 91:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Xiong DH, Yang TL, Guo YF, Recker RR, Deng HW (2006b) Polymorphisms of estrogen-biosynthesis genes CYP17 and CYP19 may influence age at menarche: a genetic association study in Caucasian females. Hum Mol Genet 15:2401–2408

    Article  CAS  PubMed  Google Scholar 

  • He LN, Xiong DH, Liu YJ, Zhang F, Recker RR, Deng HW (2007) Association study of the oestrogen signalling pathway genes in relation to age at natural menopause. J Genet 86:269–276

    Article  CAS  PubMed  Google Scholar 

  • He C, Kraft P, Chen C, Buring JE, Pare G, Hankinson SE, Chanock SJ, Ridker PM, Hunter DJ, Chasman DI (2009) Genome-wide association studies identify loci associated with age at menarche and age at natural menopause. Nat Genet

  • Hefler LA, Worda C, Huber JC, Tempfer CB (2002) A polymorphism of the Nos3 gene and age at natural menopause. Fertil Steril 78:1184–1186

    Article  PubMed  Google Scholar 

  • Hefler LA, Grimm C, Heinze G, Schneeberger C, Mueller MW, Muendlein A, Huber JC, Leodolter S, Tempfer CB (2005) Estrogen-metabolizing gene polymorphisms and age at natural menopause in Caucasian women. Hum Reprod 20:1422–1427

    Article  CAS  PubMed  Google Scholar 

  • Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558

    Article  PubMed  Google Scholar 

  • Hirschhorn JN, Altshuler D (2002) Once and again-issues surrounding replication in genetic association studies. J Clin Endocrinol Metab 87:4438–4441

    Article  CAS  PubMed  Google Scholar 

  • Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE, Wacholder S, Wang Z, Welch R, Hutchinson A, Wang J, Yu K, Chatterjee N, Orr N, Willett WC, Colditz GA, Ziegler RG, Berg CD, Buys SS, McCarty CA, Feigelson HS, Calle EE, Thun MJ, Hayes RB, Tucker M, Gerhard DS, Fraumeni JF Jr, Hoover RN, Thomas G, Chanock SJ (2007) A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 39:870–874

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Yamada M, Hayashi K, Ohki M, Uetani M, Nakamura T (1995) Relation of early menarche to high bone mineral density. Calcif Tissue Int 57:11–14

    Article  CAS  PubMed  Google Scholar 

  • Kaaks R, Lukanova A, Kurzer MS (2002) Obesity, endogenous hormones, and endometrial cancer risk: a synthetic review. Cancer Epidemiol Biomarkers Prev 11:1531–1543

    CAS  PubMed  Google Scholar 

  • Kaprio J, Rimpela A, Winter T, Viken RJ, Rimpela M, Rose RJ (1995) Common genetic influences on BMI and age at menarche. Hum Biol 67:739–753

    CAS  PubMed  Google Scholar 

  • Kevenaar ME, Themmen AP, Rivadeneira F, Uitterlinden AG, Laven JS, van Schoor NM, Lips P, Pols HA, Visser JA (2007) A polymorphism in the AMH type II receptor gene is associated with age at menopause in interaction with parity. Hum Reprod 22:2382–2388

    Article  CAS  PubMed  Google Scholar 

  • Kok HS, Onland-Moret NC, van Asselt KM, van Gils CH, van der Schouw YT, Grobbee DE, Peeters PH (2005) No association of estrogen receptor alpha and cytochrome P450c17alpha polymorphisms with age at menopause in a Dutch cohort. Hum Reprod 20:536–542

    Article  CAS  PubMed  Google Scholar 

  • Koochmeshgi J, Hosseini-Mazinani SM, Morteza Seifati S, Hosein-Pur-Nobari N, Teimoori-Toolabi L (2004) Apolipoprotein E genotype and age at menopause. Ann N Y Acad Sci 1019:564–567

    Article  CAS  PubMed  Google Scholar 

  • Kritz-Silverstein D, Barrett-Connor E (1993) Early menopause, number of reproductive years, and bone mineral density in postmenopausal women. Am J Public Health 83:983–988

    Article  CAS  PubMed  Google Scholar 

  • Kvale G (1992) Reproductive factors in breast cancer epidemiology. Acta Oncol 31:187–194

    Article  CAS  PubMed  Google Scholar 

  • Lai J, Vesprini D, Chu W, Jernstrom H, Narod SA (2001) CYP gene polymorphisms and early menarche. Mol Genet Metab 74:449–457

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Abecasis GR (2006) Mach 1.0: Rapid haplotype reconstruction and missing genotype inference. Am J Hum Genet S79:2290

    Google Scholar 

  • Long JR, Xu H, Zhao LJ, Liu PY, Shen H, Liu YJ, Xiong DH, Xiao P, Liu YZ, Dvornyk V, Li JL, Recker RR, Deng HW (2005) The oestrogen receptor alpha gene is linked and/or associated with age of menarche in different ethnic groups. J Med Genet 42:796–800

    Article  CAS  PubMed  Google Scholar 

  • Long JR, Shu XO, Cai Q, Cai H, Gao YT, Jin F, Zheng W (2006) Polymorphisms of the CYP1B1 gene may be associated with the onset of natural menopause in Chinese women. Maturitas 55:238–246

    Article  CAS  PubMed  Google Scholar 

  • Mallolas J, Duran M, Sanchez A, Jimenez D, Castellvi-Bel S, Rife M, Mila M (2001) Implications of the FMR1 gene in menopause: study of 147 Spanish women. Menopause 8:106–110

    Article  CAS  PubMed  Google Scholar 

  • McClellan JM, Susser E, King MC (2007) Schizophrenia: a common disease caused by multiple rare alleles. Br J Psychiatry 190:194–199

    Article  PubMed  Google Scholar 

  • Meyer JM, Eaves LJ, Heath AC, Martin NG (1991) Estimating genetic influences on the age-at-menarche: a survival analysis approach. Am J Med Genet 39:148–154

    Article  CAS  PubMed  Google Scholar 

  • Mitchell ES, Farin FM, Stapleton PL, Tsai JM, Tao EY, Smith-DiJulio K, Woods NF (2008) Association of estrogen-related polymorphisms with age at menarche, age at final menstrual period, and stages of the menopausal transition. Menopause 15:105–111

    PubMed  Google Scholar 

  • Murabito JM, Yang Q, Fox C, Wilson PW, Cupples LA (2005a) Heritability of age at natural menopause in the Framingham Heart Study. J Clin Endocrinol Metab 90:3427–3430

    Article  CAS  PubMed  Google Scholar 

  • Murabito JM, Yang Q, Fox CS, Cupples LA (2005b) Genome-wide linkage analysis to age at natural menopause in a community-based sample: the Framingham Heart Study. Fertil Steril 84:1674–1679

    Article  CAS  PubMed  Google Scholar 

  • Must A, Phillips SM, Naumova EN, Blum M, Harris S, Dawson-Hughes B, Rand WM (2002) Recall of early menstrual history and menarcheal body size: after 30 years, how well do women remember? Am J Epidemiol 155:672–679

    Article  CAS  PubMed  Google Scholar 

  • Ong KK, Elks CE, Li S, Zhao JH, Luan J, Andersen LB, Bingham SA, Brage S, Smith GD, Ekelund U, Gillson CJ, Glaser B, Golding J, Hardy R, Khaw KT, Kuh D, Luben R, Marcus M, McGeehin MA, Ness AR, Northstone K, Ring SM, Rubin C, Sims MA, Song K, Strachan DP, Vollenweider P, Waeber G, Waterworth DM, Wong A, Deloukas P, Barroso I, Mooser V, Loos RJ, Wareham NJ (2009) Genetic variation in LIN28B is associated with the timing of puberty. Nat Genet

  • Pan F, Xiao P, Guo Y, Liu YJ, Deng HY, Recker RR, Deng HW (2008) Chromosomal regions 22q13 and 3p25 may harbor quantitative trait loci influencing both age at menarche and bone mineral density. Hum Genet 123:419–427

    Article  CAS  PubMed  Google Scholar 

  • Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genet 2:e190

    Article  PubMed  Google Scholar 

  • Pechere-Bertschi A, Burnier M (2004) Female sex hormones, salt, and blood pressure regulation. Am J Hypertens 17:994–1001

    Article  CAS  PubMed  Google Scholar 

  • Peeters PH, Verbeek AL, Krol A, Matthyssen MM, de Waard F (1995) Age at menarche and breast cancer risk in nulliparous women. Breast Cancer Res Treat 33:55–61

    Article  CAS  PubMed  Google Scholar 

  • Perry JR, Stolk L, Franceschini N, Lunetta KL, Zhai G, McArdle PF, Smith AV, Aspelund T, Bandinelli S, Boerwinkle E, Cherkas L, Eiriksdottir G, Estrada K, Ferrucci L, Folsom AR, Garcia M, Gudnason V, Hofman A, Karasik D, Kiel DP, Launer LJ, van Meurs J, Nalls MA, Rivadeneira F, Shuldiner AR, Singleton A, Soranzo N, Tanaka T, Visser JA, Weedon MN, Wilson SG, Zhuang V, Streeten EA, Harris TB, Murray A, Spector TD, Demerath EW, Uitterlinden AG, Murabito JM (2009) Meta-analysis of genome-wide association data identifies two loci influencing age at menarche. Nat Genet

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Rosenberg NA (1999) Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet 65:220–228

    Article  CAS  PubMed  Google Scholar 

  • Rees M (1995) The age of menarche. Orgyn 4:2–4

    PubMed  Google Scholar 

  • Ridker PM, Cook NR, Lee IM, Gordon D, Gaziano JM, Manson JE, Hennekens CH, Buring JE (2005) A randomized trial of low-dose aspirin in the primary prevention of cardiovascular disease in women. N Engl J Med 352:1293–1304

    Article  CAS  PubMed  Google Scholar 

  • Ridker PM, Chasman DI, Zee RY, Parker A, Rose L, Cook NR, Buring JE (2008a) Rationale, design, and methodology of the Women’s Genome Health Study: a genome-wide association study of more than 25, 000 initially healthy american women. Clin Chem 54:249–255

    Article  CAS  PubMed  Google Scholar 

  • Ridker PM, Pare G, Parker A, Zee RY, Danik JS, Buring JE, Kwiatkowski D, Cook NR, Miletich JP, Chasman DI (2008b) Loci related to metabolic-syndrome pathways including LEPR, HNF1A, IL6R, and GCKR associate with plasma C-reactive protein: the Women’s Genome Health Study. Am J Hum Genet 82:1185–1192

    Article  CAS  PubMed  Google Scholar 

  • Rothenbuhler A, Fradin D, Heath S, Lefevre H, Bouvattier C, Lathrop M, Bougneres P (2006) Weight-adjusted genome scan analysis for mapping quantitative trait Loci for menarchal age. J Clin Endocrinol Metab 91:3534–3537

    Article  CAS  PubMed  Google Scholar 

  • Sharma K (2002) Genetic basis of human female pelvic morphology: a twin study. Am J Phys Anthropol 117:327–333

    Article  PubMed  Google Scholar 

  • Snieder H, MacGregor AJ, Spector TD (1998) Genes control the cessation of a woman’s reproductive life: a twin study of hysterectomy and age at menopause. J Clin Endocrinol Metab 83:1875–1880

    Article  CAS  PubMed  Google Scholar 

  • Stavrou I, Zois C, Ioannidis JP, Tsatsoulis A (2002) Association of polymorphisms of the oestrogen receptor alpha gene with the age of menarche. Hum Reprod 17:1101–1105

    Article  CAS  PubMed  Google Scholar 

  • Stavrou I, Zois C, Chatzikyriakidou A, Georgiou I, Tsatsoulis A (2006) Combined estrogen receptor alpha and estrogen receptor beta genotypes influence the age of menarche. Hum Reprod 21:554–557

    Article  CAS  PubMed  Google Scholar 

  • Stolk L, Zhai G, van Meurs JB, Verbiest MM, Visser JA, Estrada K, Rivadeneira F, Williams FM, Cherkas L, Deloukas P, Soranzo N, de Keyzer JJ, Pop VJ, Lips P, Lebrun CE, van der Schouw YT, Grobbee DE, Witteman J, Hofman A, Pols HA, Laven JS, Spector TD, Uitterlinden AG (2009) Loci at chromosomes 13, 19 and 20 influence age at natural menopause. Nat Genet

  • Sulem P, Gudbjartsson DF, Rafnar T, Holm H, Olafsdottir EJ, Olafsdottir GH, Jonsson T, Alexandersen P, Feenstra B, Boyd HA, Aben KK, Verbeek AL, Roeleveld N, Jonasdottir A, Styrkarsdottir U, Steinthorsdottir V, Karason A, Stacey SN, Gudmundsson J, Jakobsdottir M, Thorleifsson G, Hardarson G, Gulcher J, Kong A, Kiemeney LA, Melbye M, Christiansen C, Tryggvadottir L, Thorsteinsdottir U, Stefansson K (2009) Genome-wide association study identifies sequence variants on 6q21 associated with age at menarche. Nat Genet

  • Sundarrajan C, Liao WX, Roy AC, Ng SC (2001) Association between estrogen receptor-beta gene polymorphisms and ovulatory dysfunctions in patients with menstrual disorders. J Clin Endocrinol Metab 86:135–139

    Article  CAS  PubMed  Google Scholar 

  • te Velde ER, Pearson PL (2002) The variability of female reproductive ageing. Hum Reprod Update 8:141–154

    Article  PubMed  Google Scholar 

  • Tempfer CB, Riener EK, Keck C, Grimm C, Heinze G, Huber JC, Gitsch G, Hefler LA (2005) Polymorphisms associated with thrombophilia and vascular homeostasis and the timing of menarche and menopause in 728 white women. Menopause 12:325–330

    Article  PubMed  Google Scholar 

  • Treloar SA, Martin NG (1990) Age at menarche as a fitness trait: nonadditive genetic variance detected in a large twin sample. Am J Hum Genet 47:137–148

    CAS  PubMed  Google Scholar 

  • Treloar SA, Do KA, Martin NG (1998) Genetic influences on the age at menopause. Lancet 352:1084–1085

    Article  CAS  PubMed  Google Scholar 

  • van Asselt KM, Kok HS, Peeters PH, Roest M, Pearson PL, te Velde ER, Grobbee DE, van der Schouw YT (2003) Factor V Leiden mutation accelerates the onset of natural menopause. Menopause 10:477–481

    Article  PubMed  Google Scholar 

  • van Asselt KM, Kok HS, Putter H, Wijmenga C, Peeters PH, van der Schouw YT, Grobbee DE, te Velde ER, Mosselman S, Pearson PL (2004) Linkage analysis of extremely discordant and concordant sibling pairs identifies quantitative trait loci influencing variation in human menopausal age. Am J Hum Genet 74:444–453

    Article  PubMed  Google Scholar 

  • van der Graaf Y, de Kleijn MJ, van der Schouw YT (1997) Menopause and cardiovascular disease. J Psychosom Obstet Gynaecol 18:113–120

    Article  PubMed  Google Scholar 

  • van der Schouw YT, van der Graaf Y, Steyerberg EW, Eijkemans JC, Banga JD (1996) Age at menopause as a risk factor for cardiovascular mortality. Lancet 347:714–718

    Article  PubMed  Google Scholar 

  • Weel AE, Uitterlinden AG, Westendorp IC, Burger H, Schuit SC, Hofman A, Helmerhorst TJ, van Leeuwen JP, Pols HA (1999) Estrogen receptor polymorphism predicts the onset of natural and surgical menopause. J Clin Endocrinol Metab 84:3146–3150

    Article  CAS  PubMed  Google Scholar 

  • Worda C, Walch K, Sator M, Eppel W, Tempfer CB, Schneeberger C, Huber JC, Hefler LA (2004) The influence of Nos3 polymorphisms on age at menarche and natural menopause. Maturitas 49:157–162

    Article  CAS  PubMed  Google Scholar 

  • Xita N, Tsatsoulis A, Stavrou I, Georgiou I (2005) Association of SHBG gene polymorphism with menarche. Mol Hum Reprod 11:459–462

    Article  CAS  PubMed  Google Scholar 

  • Xu WH, Xiang YB, Ruan ZX, Zheng W, Cheng JR, Dai Q, Gao YT, Shu XO (2004) Menstrual and reproductive factors and endometrial cancer risk: results from a population-based case-control study in urban Shanghai. Int J Cancer 108:613–619

    Article  CAS  PubMed  Google Scholar 

  • Yaich L, Dupont WD, Cavener DR, Parl FF (1992) Analysis of the PvuII restriction fragment-length polymorphism and exon structure of the estrogen receptor gene in breast cancer and peripheral blood. Cancer Res 52:77–83

    CAS  PubMed  Google Scholar 

  • Yang F, Xiong DH, Guo Y, Shen H, Xiao P, Zhang F, Jiang H, Recker RR, Deng HW (2007) The chemokine (C-C-motif) receptor 3 (CCR3) gene is linked and associated with age at menarche in Caucasian females. Hum Genet 121:35–42

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Xiong DH, Guo Y, Yang TL, Recker RR, Deng HW (2007) Polymorphism in the insulin-like growth factor 1 gene is associated with age at menarche in caucasian females. Hum Reprod 22:1789–1794

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank J. Miletich and A. Parker as well as the technical staff at Amgen, Inc (Cambridge, MA, USA) for their collaboration and scientific support in performing the genotyping for the WGHS. The NHS GWAS was performed as part of the Cancer Genetic Markers of Susceptibility initiative of the NCI. We particularly acknowledge the contributions of R. Hoover, A. Hutchinson, K. Jacobs and G. Thomas. We thank H. Ranu and P. Soule of the DF/HCC High Throughput Polymorphism Detection Laboratory for assistance. The WGHS is supported by HL 043851 and HL69757 from the National Heart Lung and Blood Institute and CA 047988 from the National Cancer Institute (Bethesda, MD, USA), the Donald W. Reynolds Foundation (Las Vegas, NV, USA), the Fondation Leducq (Paris, France), with collaborative scientific support and funding for genotyping provided by Amgen, Inc. The NHS is supported by CA 40356, CA 87969, and U01-CA98233 from the National Cancer Institute. We acknowledge the study participants in the NHS and the WGHS for their contribution in making this study possible.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyan He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 755 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, C., Kraft, P., Chasman, D.I. et al. A large-scale candidate gene association study of age at menarche and age at natural menopause. Hum Genet 128, 515–527 (2010). https://doi.org/10.1007/s00439-010-0878-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-010-0878-4

Keywords

Navigation