Skip to main content
Log in

Power analysis for case–control association studies of samples with known family histories

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Genome-wide case–control studies have been widely used to identify genetic variants that predispose to human diseases. Such studies are powerful in detecting common genetic variants with moderate effects, but quickly lose power as allele frequency and genotype relative risk decrease. Because patients with one or more affected relatives are more likely to inherit disease-predisposing alleles of a genetic disease than patients without family histories of the disease, sampling patients with affected relatives almost always increases the frequency of disease predisposing alleles in cases and improves the power of case–control association studies. This paper evaluates the power of case–control studies that select cases and/or controls according to their family histories of disease. Our results showed that this study design can dramatically increase the power of a case–control association study for a wide range of disease types. Because each additional affected relative of a patient reduces the required sample size roughly by a pair of case and control, inclusion of cases with affected relatives can dramatically decrease the required sample size and thus the cost of such studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amos CI (2007) Successful design and conduct of genome-wide association studies. Hum Mol Genet 16(2):R220–R225

    Article  CAS  PubMed  Google Scholar 

  • Easton DF, Pooley KA, Dunning AM, Pharoah PDP, Thompson D, Ballinger DG, Struewing JP, Morrison J, Field H, Luben R, Wareham N, Ahmed S, Healey CS, Bowman R, Meyer KB, Haiman CA, Kolonel LK, Henderson BE, Le Marchand L, Brennan P, Sangrajrang S, Gaborieau V, Odefrey F, Shen C-Y, Wu P-E, Wang H-C, Eccles D, Evans DG, Peto J, Fletcher O, Johnson N, Seal S, Stratton MR, Rahman N, Chenevix-Trench G, Bojesen SE, Nordestgaard BG, Axelsson CK, Garcia-Closas M, Brinton L, Chanock S, Lissowska J, Peplonska B, Nevanlinna H, Fagerholm R, Eerola H, Kang D, Yoo K-Y, Noh D-Y, Ahn S-H, Hunter DJ, Hankinson SE, Cox DG, Hall P, Wedren S, Liu J, Low Y-L, Bogdanova N, Schurmann P, Dork T, Tollenaar RAEM, Jacobi CE, Devilee P, Klijn JGM, Sigurdson AJ, Doody MM, Alexander BH, Zhang J, Cox A, Brock IW, MacPherson G, Reed MWR, Couch FJ, Goode EL, Olson JE, Meijers-Heijboer H, van den Ouweland A, Uitterlinden A, Rivadeneira F, Milne RL, Ribas G, Gonzalez-Neira A, Benitez J, Hopper JL, McCredie M, Southey M, Giles GG, Schroen C, Justenhoven C, Brauch H, Hamann U, Ko Y-D, Spurdle AB, Beesley J, Chen X, Mannermaa A, Kosma V-M, Kataja V, Hartikainen J, Day NE et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447:1087–1093

    Article  CAS  PubMed  Google Scholar 

  • Eeles RA, Kote-Jarai Z, Giles GG, Olama AA, Guy M, Jugurnauth SK, Mulholland S, Leongamornlert DA, Edwards SM, Morrison J, Field HI, Southey MC, Severi G, Donovan JL, Hamdy FC, Dearnaley DP, Muir KR, Smith C, Bagnato M, Ardern-Jones AT, Hall AL, O’Brien LT, Gehr-Swain BN, Wilkinson RA, Cox A, Lewis S, Brown PM, Jhavar SG, Tymrakiewicz M, Lophatananon A, Bryant SL, Horwich A, Huddart RA, Khoo VS, Parker CC, Woodhouse CJ, Thompson A, Christmas T, Ogden C, Fisher C, Jamieson C, Cooper CS, English DR, Hopper JL, Neal DE, Easton DF (2008) Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet 40:316–321

    Article  CAS  PubMed  Google Scholar 

  • Fearnhead NS, Winney B, Bodmer WF (2005) Rare variant hypothesis for multifactorial inheritance: susceptibility to colorectal adenomas as a model. Cell Cycle 4:521–525

    CAS  PubMed  Google Scholar 

  • Gold B, Kirchhoff T, Stefanov S, Lautenberger J, Viale A, Garber J, Friedman E, Narod S, Olshen AB, Gregersen P, Kosarin K, Olsh A, Bergeron J, Ellis NA, Klein RJ, Clark AG, Norton L, Dean M, Boyd J, Offit K (2008) Genome-wide association study provides evidence for a breast cancer risk locus at 6q22.33. Proc Natl Acad Sci 105:4340–4345

    Article  CAS  PubMed  Google Scholar 

  • Houlston RS, Peto J (2003) The future of association studies of common cancers. Hum Genet 112:434–435

    PubMed  Google Scholar 

  • Maher B (2008) Personal genomes: the case of the missing heritability. Nature 456:18–21

    Article  CAS  PubMed  Google Scholar 

  • Manolio TA, Brooks LD, Collins FS (2008) A HapMap harvest of insights into the genetics of common disease. J Clin Invest 118:1590–1605

    Article  CAS  PubMed  Google Scholar 

  • Matakidou A, Eisen T, Houlston RS (2005) Systematic review of the relationship between family history and lung cancer risk. Br J Cancer 93:825–833

    Article  CAS  PubMed  Google Scholar 

  • Rudd MF, Webb EL, Matakidou A, Sellick GS, Williams RD, Bridle H, Eisen T, Houlston RS (2006) Variants in the GH-IGF axis confer susceptibility to lung cancer. Genome Res 16:693–701

    Article  CAS  PubMed  Google Scholar 

  • Simchoni S, Friedman E, Kaufman B, Gershoni-Baruch R, Orr-Urtreger A, Kedar-Barnes I, Shiri-Sverdlov R, Dagan E, Tsabari S, Shohat M, Catane R, King MC, Lahad A, Levy-Lahad E (2006) Familial clustering of site-specific cancer risks associated with BRCA1 and BRCA2 mutations in the Ashkenazi Jewish population. Proc Natl Acad Sci USA 103:3770–3774

    Article  CAS  PubMed  Google Scholar 

  • Skol AD, Scott LJ, Abecasis GR, Boehnke M (2006) Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 38:209–213

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Kleberg Center for Molecular Markers at the M. D. Anderson Cancer Center and grants R01CA133996 and U01CA076293 from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, B., Li, B., Han, Y. et al. Power analysis for case–control association studies of samples with known family histories. Hum Genet 127, 699–704 (2010). https://doi.org/10.1007/s00439-010-0824-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-010-0824-5

Keywords

Navigation