Skip to main content
Log in

A most distant intergeneric hybrid offspring (Larcon) of lesser apes, Nomascus leucogenys and Hylobates lar

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Unlike humans, which are the sole remaining representatives of a once larger group of bipedal apes (hominins), the “lesser apes” (hylobatids) are a diverse radiation with numerous extant species. Consequently, the lesser apes can provide a valuable evolutionary window onto the possible interactions (e.g., interbreeding) of hominin lineages coexisting in the same time and place. In the present work, we employ chromosomal analyses to verify the hybrid ancestry of an individual (Larcon) produced by two of the most distant genera of lesser apes, Hylobates (lar-group gibbons) and Nomascus (concolor-group gibbons). In addition to a mixed pelage pattern, the hybrid animal carries a 48-chromosome karyotype that consists of the haploid complements of each parental species: Hylobates lar (n = 22) and Nomascus leucogenys leucogenys (n = 26). Studies of this animal’s karyotype shed light onto the processes of speciation and genus-level divergence in the lesser apes and, by extension, across the Hominoidea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Brandon-Jones D, Eudey AA, Geissmann T, Groves CP, Melnick DJ, Morales JC, Shekelle M, Stewart C-B (2004) Asian primate classification. Int J Primatol 25:97–163

    Article  Google Scholar 

  • Brockelman WY, Gittins SP (1984) Natural hybridization in the Hylobates lar species group: implications for speciation in gibbons. In: Preushoft H, Chivers DJ, Brockelman WY, Creel N (eds) The lesser apes. Edinburgh University Press, Edinburgh, pp 498–532

    Google Scholar 

  • Carbone L, Vessere GM, ten Hallers BFH, Zhu B, Osoegawa K, Mootnick A, Kofler A, Wienberg J, Rogers J, Humphray S, Scott C, Harris RA, Milosavljevic A, de Jong PJ (2006) A high-resolution map of synteny disruptions in gibbon and human genomes. PLos Genet 2:e223

    Article  PubMed  CAS  Google Scholar 

  • Chiarelli B (1972) The karyotypes of the gibbons. In: Rumbaugh DM (ed) Gibbon and Siamang, vol 1. Karger, Basel, pp 90–102

  • Couturier J, Lernould J-M (1991) Karyotypic study of four gibbon forms provisionally considered as subspecies of Hylobates (Nomascus) concolor (Primates, Hylobatidae). Folia Primatol 56:95–104

    PubMed  CAS  Google Scholar 

  • Disotell TR (2006) ‘Chumanzee’ evolution: the urge to diverge and merge. Genome Biol 7:240

    Article  PubMed  CAS  Google Scholar 

  • Dunbar RIM, Dunbar P (1973) On hybridization between Theropithecus gelada and Papio anubis in the wild. J Hum Evol 3:187–192

    Article  Google Scholar 

  • Geissmann T (2002) Duet-splitting and the evolution of gibbon songs. Biol Rev 77:57–76

    PubMed  Google Scholar 

  • Groves CP (1972) Systematics and phylogeny of gibbons. In: Rumbaugh DM (ed) Gibbon and Siamang, vol 1. Karger, Basel, pp 1–89

  • Groves C (2001) Primate taxonomy. Smithonian Institution Press, Washington

    Google Scholar 

  • Guillen AKZ, Hirai Y, Tanoue T, Hirai H (2004) Transcriptional repression mechanisms of nucleolus organizer regions (NORs) in humans and chimpanzees. Chrom Res 12:225–237

    Article  PubMed  CAS  Google Scholar 

  • Hall LM, Jones DS, Wood BA (1998) Evolution of the gibbon subgenera inferred from cytochrome b DNA sequence data. Mol Phylogenet Evol 10:281–286

    Article  PubMed  CAS  Google Scholar 

  • Hayashi S, Hayasaka K, Takenaka O, Horai S (1995) Molecular phylogeny of gibbons inferred from mitochondrial DNAsequences: preliminary report. J Mol Evol 41:359–365

    Article  PubMed  CAS  Google Scholar 

  • Hirai H, Taguchi T, Godwin AK (1999) Genomic differentiation of 18S ribosomal DNA and β-satellite DNA in the hominoid and its evolutionary aspects. Chrom Res 7:531–540

    Article  PubMed  CAS  Google Scholar 

  • Hirai H, Mootnick AR, Takenaka O, Suryobroto B, Mouri T, Kawamoto Y, Katoh A, Kimura N, Katoh A, Maeda N (2003) Genetic mechanism and property of a whole-arm translocation (WAT) between chromosomes 8 and 9 of agile gibbons (Hylobates agilis). Chrom Res 11:37–50

    Article  PubMed  CAS  Google Scholar 

  • Hirai H, Wijayanto H, Tanaka H, Mootnick AR, Hayano A, Perwitasari-Frajalla D, Iskandariati D, Sajuthi D (2005) A whole-arm translocation (WAT8/9) separating Sumatran and Bornean agile gibbons, and its evolutionary features. Chrom Res 13:123–133

    Article  PubMed  CAS  Google Scholar 

  • Jauch A, Wienberg J, Stanyon R, Arnold N, Tofanelli S, Ishida T, Cremer T (1992) Reconstruction of genomic rearrangements in great apes and gibbons by chromosome painting. Proc Natl Acad Sci USA 89:8611–8615

    Article  PubMed  CAS  Google Scholar 

  • Koehler U, Bigoni F, Wienberg J, Stanyon R (1995) Genomic reorganization in the concolor gibbon (Hylobates concolor) revealed by chromosome painting. Genomics 30:287–292

    Article  PubMed  CAS  Google Scholar 

  • Kopp E, Mayr B, Schleger W (1986) Species-specific non-expression of ribosomal RNA genes in a mammalian hybrid, the mule. Chromosoma 94:346–352

    Article  PubMed  CAS  Google Scholar 

  • Marshall J, Sugardjito J (1986) Gibbon systematics. In: Swindler DR, Erwin J (eds) Comparative primate biology, vol 1, systematics, evolution, and anatomy. Alan R. Liss, New York, pp 137–185

  • Moore CM, Janish C, Eddy CA, Hubbard CB, Leland MM, Rogers J (1999) Cytogenetic and fertility studies of a Rheboon, Rhesus macaque (Macaca mulatta) × Babboon (Papio hamadryas) cross: further support for a single karyotype nomenclature. Am J Physic Anthropol 110:119–127

    Article  CAS  Google Scholar 

  • Mootnick A, Groves C (2005) A new generic name for the hoolock gibbon (Hylobates). Int J Primatol 26:971–976

    Article  Google Scholar 

  • Müller S, Hollatz M, Weinberg J (2003) Chromosomal phylogeny and evolution of gibbons (Hylobatidae). Hum Genet 113:493–501

    Article  PubMed  Google Scholar 

  • Myers RH, Shafer DA (1979) Hybrid ape offspring of a mating of gibbon and siamang. Science 205:308–310

    Article  PubMed  CAS  Google Scholar 

  • Neusser M, Munch M, Anzenberger G, Müller S (2005) Investigation of marmoset hybrids (Cebuella pygmaea × Callithrix jacchus) and related Callitrichinae (Platyrrhini) by cross-species chromosome painting and comparative genomic hybridization. Cytogenet Genome Res 108:191–196

    Article  PubMed  CAS  Google Scholar 

  • O’Brien SJ, Menotti-Raymond M, Murphy WJ, Nash WG, Weinberg J, Stanyon R, Copeland NG, Jenkins NA, Womack J, Marshall JA, Graves JM (1999) The promise of comparative genomics in mammals. Science 286:458–481

    Article  PubMed  CAS  Google Scholar 

  • Patterson N, Richter DJ, Gnerre S, Lander ES, Reich D (2006) Genetic evidence for complex speciation of humans and chimpanzees. Nature 441:1103–1108

    Article  PubMed  CAS  Google Scholar 

  • Pikaard CS (2000) The epigenetics of nucleolar dominance. Trends Genet 16:495–500

    Article  PubMed  CAS  Google Scholar 

  • Primate Research Institute, Kyoto University (2002) Guide for the Care and Use of Laboratory Primates, 2nd edn. Primate Research Institute, Kyoto University, Inuyama

    Google Scholar 

  • Prouty LA, Buchanan PD, Pollitzer WS, Mootnick AR (1983) A presumptive new hylobatid subgenus with 38 chromosomes. Cytogenet Cell Genet 35:141–142

    PubMed  CAS  Google Scholar 

  • Reeder RH (1985) Mechanisms of nucleolar dominace in animals and plants. J Cell Biol 101:2013–2016

    Article  PubMed  CAS  Google Scholar 

  • Roberto R, Capozzi O, Wilson RK, Mardis ER, Lomiento M, Tuzun E, Cheng Z, Mootnick AR, Archidiacono N, Rocchi M, Eichler EE (2007) Molecular refinement of gibbon genome rearrangements. Genome Res 17:249–257

    Article  PubMed  CAS  Google Scholar 

  • Roos C, Geissmann T (2001) Molecular phylogeny of the major hylobatid divisions. Mol Phyl Evol 19:486–494

    Article  CAS  Google Scholar 

  • Stanyon R, Fantini C, Camperio-Ciani C, Chiarelli B, Ardito G (1988) Banded karyotypes of 20 Papionini species reveal no necessary correlation with speciation. Am J Primatol 16:3–17

    Article  Google Scholar 

  • Sumner AT (1972) A simple technique for demonstrating centromere heterochromatin. Exp Cell Res 75:304–306

    Article  PubMed  CAS  Google Scholar 

  • The Zoological Society of London (1970) Species of wild animals bred captivity during 1968. International Zoo Yearbook, vol 10, p 257

  • van Gelder RG (1977) Mammalian hybrids and generic limits. Am Museum Novitates 2635:1–25

    Google Scholar 

  • van Tuinen P, Ledbetter DH (1983) Cytogenetic comparison and phylogeny of the species of Hylobatidae. Am J Phys Anthropol 61:453–466

    Article  PubMed  Google Scholar 

  • Wijayanto H, Hirai Y, Kamanaka Y, Katho A, Sajuthi D, Hirai H (2005) Patterns of C-heterochromatin and telomeric DNA in two representative group of small apes, the genera Hylobates and Symphalangus. Chrom Res 13:717–724

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank C. P. Groves for his valuable comments to the manuscript and A. Tosi for his critical reading and revising of the manuscript. This study was supported by the twenty-first century COE (A14) and the Global COE (A06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirohisa Hirai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirai, H., Hirai, Y., Domae, H. et al. A most distant intergeneric hybrid offspring (Larcon) of lesser apes, Nomascus leucogenys and Hylobates lar . Hum Genet 122, 477–483 (2007). https://doi.org/10.1007/s00439-007-0425-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-007-0425-0

Keywords

Navigation