Skip to main content

Advertisement

Log in

Comparative genomic assessment of members of genus Tenacibaculum: an exploratory study

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Tenacibaculosis is an ulcerative skin disorder that affects finfish. It is caused by members of the genus Tenacibaculum, resulting in eccentric behavioural changes, including anorexia, lethargy, and abnormal swimming patterns that often result in mortality. Currently, species suspected of causing fish mortality include T. ovolyticum, T. gallaicum, T. discolor, T. finnmarkense, T. mesophilum, T. soleae, T. dicentrarchi, and T. maritimum. However, pathogenic members and the mechanisms involved in disease causation, progression, and transmission are limited due to the inadequate sequencing efforts in the past decade. In this study, we use a comparative genomics approach to investigate the characteristic features of 26 publicly available genomes of Tenacibaculum and report our observations. We propose the reclassification of “T. litoreum HSC 22” to the singaporense species and assignment of “T. sp. 4G03 to the species discolor (species with quotation marks have not been appropriately named). We also report the co-occurrence of several antimicrobial resistance/virulence genes and genes private to a few members. Finally, we mine several non-B DNA forming regions, operons, tandem repeats, high-confidence putative effector proteins, and sortase that might play a pivotal role in bacterial evolution, transcription, and pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data and all supplementary material can be made public after publication.

References

  • Arndt D et al (2016) PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44(W1):W16–W21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Avendaño-Herrera R, Toranzo AE, Magariños B (2006) Tenacibaculosis infection in marine fish caused by Tenacibaculum maritimum: a review. Dis Aquat Org 71(3):255–266

    Google Scholar 

  • Bacolla A, Wells RD (2004) Non-B DNA conformations, genomic rearrangements, and human disease. J Biol Chem 279(46):47411–47414

    CAS  PubMed  Google Scholar 

  • Bleidorn C, Gerth M (2018) A critical re-evaluation of multilocus sequence typing (MLST) efforts in Wolbachia. FEMS Microbiol Ecol 94(1):fix163

    Google Scholar 

  • Bondy-Denomy J et al (2013) Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493(7432):429–432

    CAS  PubMed  Google Scholar 

  • Brazda V, Fojta M, Bowater RP (2020) Structures and stability of simple DNA repeats from bacteria. Biochem J 477(2):325–339

    CAS  PubMed  Google Scholar 

  • Bridel S et al (2018) Comparative genomics of Tenacibaculum dicentrarchi and “Tenacibaculum finnmarkense” highlights intricate evolution of fish-pathogenic species. Genome Biol Evol 10(2):452–457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Canada H (2010) List of veterinary drugs that are authorized for sale by Health Canada for use in food‐producing aquatic animals

  • Cer R et al (2012) Searching for non-B DNA-forming motifs using nBMST (non-B DNA motif search tool). Curr Protoc Human Genet 73(1):18.7.1-18.7.22

    Google Scholar 

  • Challacombe JF, Pillai S, Kuske CR (2017) Shared features of cryptic plasmids from environmental and pathogenic Francisella species. PLoS ONE 12(8):e0183554

    PubMed  PubMed Central  Google Scholar 

  • Cornet L, Baurain D (2022) Contamination detection in genomic data: more is not enough. Genome Biol 23(1):60

    PubMed  PubMed Central  Google Scholar 

  • Dainat JH, Hereñú D (2020) NBISweden/AGAT: AGAT-v0.4.0 (v0.4.0). Zenodo

  • Danecek P et al (2021) Twelve years of SAMtools and BCFtools. Gigascience 10(2):giab008

    PubMed  PubMed Central  Google Scholar 

  • Darling AE, Mau B, Perna NT (2010) progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5(6):e11147

    PubMed  PubMed Central  Google Scholar 

  • Datta MS et al (2016) Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat Commun 7(1):1–7

    Google Scholar 

  • Eichinger V et al (2016) EffectiveDB—updates and novel features for a better annotation of bacterial secreted proteins and type III, IV, VI secretion systems. Nucleic Acids Res 44(D1):D669–D674

    CAS  PubMed  Google Scholar 

  • Emms D, Kelly S (2018) OrthoFinder2: fast and accurate phylogenomic orthology analysis from gene sequences. BioRxiv. https://doi.org/10.1101/466201

    Article  Google Scholar 

  • Evans B, Amyes S (2014) Oxa ß-lactamase. Clin Microbiol Rev 27:241–263

    PubMed  PubMed Central  Google Scholar 

  • Feijao P et al (2018) MentaLiST–a fast MLST caller for large MLST schemes. Microb Genom. https://doi.org/10.1099/mgen.0.000146

    Article  PubMed  PubMed Central  Google Scholar 

  • Figueras MJ et al (2014) Taxonomic affiliation of new genomes should be verified using average nucleotide identity and multilocus phylogenetic analysis. Genome Announc 2(6):e00927-e1014

    PubMed  PubMed Central  Google Scholar 

  • Frette L et al (2004) Tenacibaculum skagerrakense sp. Nov., a marine bacterium isolated from the pelagic zone in Skagerrak, Denmark. Int J Syst Evol Microbiol 54(2):519–524

    CAS  PubMed  Google Scholar 

  • Fröhlich C et al (2020) Structural and biochemical characterization of the environmental MBLs MYO-1, ECV-1 and SHD-1. J Antimicrob Chemother 75(9):2554–2563

    PubMed  PubMed Central  Google Scholar 

  • García-Muse T, Aguilera A (2019) R loops: from physiological to pathological roles. Cell 179(3):604–618

    PubMed  Google Scholar 

  • Gourzioti E et al (2016) Tenacibaculosis in aquaculture farmed marine fish. J Hellenic Vet Med Soc 67(1):21–32

    Google Scholar 

  • Gowrishankar J, Leela JK, Anupama K (2013) R-loops in bacterial transcription: their causes and consequences. Transcription 4(4):153–157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grohmann E, Muth Gn, Espinosa M (2003) Conjugative plasmid transfer in gram-positive bacteria. Microbiol Mol Biol Rev 67(2):277–301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grothusen H et al (2016) First complete genome sequence of Tenacibaculum dicentrarchi, an emerging bacterial pathogen of salmonids. Genome Announc 4(1):e01756-e1815

    PubMed  PubMed Central  Google Scholar 

  • Gu Z, Eils R, Schlesner M (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32(18):2847–2849

    CAS  PubMed  Google Scholar 

  • Guiblet WM et al (2021) Non-B DNA: a major contributor to small-and large-scale variation in nucleotide substitution frequencies across the genome. Nucleic Acids Res 49(3):1497–1516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hassing RJ et al (2015) International travel and acquisition of multidrug-resistant Enterobacteriaceae: a systematic review. Eurosurveillance 20(47):30074

    Google Scholar 

  • Hellweger FL, Huang Y, Luo H (2018) Carbon limitation drives GC content evolution of a marine bacterium in an individual-based genome-scale model. ISME J 12(5):1180–1187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hille F et al (2018) The biology of CRISPR-Cas: backward and forward. Cell 172(6):1239–1259

    CAS  PubMed  Google Scholar 

  • Hon J et al (2017) pqsfinder: an exhaustive and imperfection-tolerant search tool for potential quadruplex-forming sequences in R. Bioinformatics 33(21):3373–3379

    CAS  PubMed  Google Scholar 

  • Hou D et al (2021) Assessing the risks of potential bacterial pathogens attaching to different microplastics during the summer–autumn period in a mariculture cage. Microorganisms 9(9):1909

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jenjaroenpun P et al (2015) QmRLFS-finder: a model, web server and stand-alone tool for prediction and analysis of R-loop forming sequences. Nucleic Acids Res 43(W1):W527–W534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jing R et al (2021) DeepT3 2.0: improving type III secreted effector predictions by an integrative deep learning framework. NAR Genom Bioinform 3(4):lqab086

    PubMed  PubMed Central  Google Scholar 

  • Jolley KA, Bray JE, Maiden MC (2018) Open-access bacterial population genomics: BIGSdb software, the PubMLST org website and their applications. Wellcome Open Res. https://doi.org/10.12688/wellcomeopenres.14826.1

    Article  PubMed  PubMed Central  Google Scholar 

  • Karp PD et al (2019) A comparison of microbial genome web portals. Front Microbiol. https://doi.org/10.3389/fmicb.2019.00208

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan A, Mathelier A (2017) Intervene: a tool for intersection and visualization of multiple gene or genomic region sets. BMC Bioinform 18(1):1–8

    Google Scholar 

  • Kim D, Park S, Chun J (2021) Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 59(5):476–480

    PubMed  Google Scholar 

  • Kumagai, Y. A large-scale comparative genomic analysis to reveal adaptation strategies of marine Flavobacteriia. Doctoral dissertation, University of Tokyo. https://repository.dl.itc.u-tokyo.ac.jp/record/53369/files/A35188.pdf

  • Lagadec E et al (2021) Phylogenetic analyses of Norwegian Tenacibaculum strains confirm high bacterial diversity and suggest circulation of ubiquitous virulent strains. PLoS ONE 16(10):e0259215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lang KS et al (2017) Replication-transcription conflicts generate R-loops that orchestrate bacterial stress survival and pathogenesis. Cell 170(4):787-799.e18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo H et al (2015) selection maintains low genomic GC content in marine SAR11 lineages. Mol Biol Evol 32(10):2738–2748

    CAS  PubMed  Google Scholar 

  • Maldonado-Miranda JJ et al (2022) Summary of economic losses due to bacterial pathogens in aquaculture industry. Bacterial fish diseases. Elsevier, pp 399–417

    Google Scholar 

  • Malik A et al (2022) SortPred: the first machine learning based predictor to identify bacterial sortases and their classes using sequence-derived information. Comput Struct Biotechnol J 20:165–174

    CAS  PubMed  Google Scholar 

  • Miyake S et al (2019) Complete genome sequence of sponge-associated Tenacibaculum mesophilum DSM 13764T. Microbiol Resour Announc 8(48):e00517-e519

    PubMed  PubMed Central  Google Scholar 

  • Miyake S et al (2020) Insights into the microbiome of farmed Asian sea bass (Lates calcarifer) with symptoms of tenacibaculosis and description of Tenacibaculum singaporense sp. nov. Anton Leeuwenhoek 113:737–752

    CAS  Google Scholar 

  • Moreno-Cinos C et al (2019) ClpP protease, a promising antimicrobial target. Int J Mol Sci 20(9):2232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nowlan JP, Lumsden JS, Russell S (2020) Advancements in characterizing Tenacibaculum infections in Canada. Pathogens 9(12):1029

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nowlan JP et al (2021) Experimental induction of tenacibaculosis in Atlantic Salmon (Salmo salar L.) using Tenacibaculum maritimum, T. dicentrarchi, and T. finnmarkense. Pathogens 10(11):1439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nowlan JP et al (2023) Genomics of Tenacibaculum species in British Columbia, Canada. Pathogens 12(1):101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oh Y-S et al (2012) Tenacibaculum jejuense sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol 62(2):414–419

    CAS  PubMed  Google Scholar 

  • Olsen AB et al (2020) Tenacibaculum piscium sp. nov., isolated from skin ulcers of sea-farmed fish, and description of Tenacibaculum finnmarkense sp. nov. with subdivision into genomovars finnmarkense and ulcerans. Int J Syst Evol Microbiol 70(12):6079–6090

    CAS  PubMed  Google Scholar 

  • Pellow D, Mizrahi I, Shamir R (2020) PlasClass improves plasmid sequence classification. PLoS Comput Biol 16(4):e1007781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Pascual D et al (2017) The complete genome sequence of the fish pathogen Tenacibaculum maritimum provides insights into virulence mechanisms. Front Microbiol 8:1542

    PubMed  PubMed Central  Google Scholar 

  • Powell J, Podlasly T, Cahs B (2015) Tenacibaculum maritimum: current knowledge and future directions in Campbell River: CAHS workshop

  • Prozorov A (2001) Recombinational rearrangements in bacterial genome and bacterial adaptation to the environment. Microbiology 70(5):501–512

    CAS  Google Scholar 

  • Rissman AI et al (2009) Reordering contigs of draft genomes using the Mauve aligner. Bioinformatics 25(16):2071–2073

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-R LM, Konstantinidis KT (2014) Bypassing cultivation to identify bacterial species. Microbe 9(3):111–118

    Google Scholar 

  • Russel J et al (2020) CRISPRCasTyper: automated identification, annotation, and classification of CRISPR-Cas Loci. CRISPR J 3(6):462–469

    CAS  PubMed  Google Scholar 

  • Saldarriaga-Córdoba M, Irgang R, Avendaño-Herrera R (2021) Comparison between genome sequences of Chilean Tenacibaculum dicentrarchi isolated from red conger eel (Genypterus chilensis) and Atlantic salmon (Salmo salar) focusing on bacterial virulence determinants. J Fish Dis 44(11):1843–1860

    PubMed  Google Scholar 

  • Segerman B (2020) The most frequently used sequencing technologies and assembly methods in different time segments of the bacterial surveillance and RefSeq genome databases. Front Cell Infect Microbiol 10:527102

    PubMed  PubMed Central  Google Scholar 

  • Shen W et al (2016) SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11(10):e0163962

    PubMed  PubMed Central  Google Scholar 

  • Shin S-K, Kim E, Yi H (2018) Tenacibaculum todarodis sp. Nov., isolated from a squid. Int J Syst Evol Microbiol 68(5):1479–1483

    CAS  PubMed  Google Scholar 

  • Siguier P et al (2006) ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34(suppl_1):32–36

    Google Scholar 

  • Singh HN, Rajeswari MR (2017) DNA-triplex forming purine repeat containing genes in Acinetobacter baumannii and their association with infection and adaptation. Front Cell Infect Microbiol 7:250

    PubMed  PubMed Central  Google Scholar 

  • Steinum TM et al (2021) Tenacibaculum maritimum CRISPR loci analysis and evaluation of isolate spoligotyping. J Appl Microbiol 131(4):1848–1857

    CAS  PubMed  Google Scholar 

  • Suzuki M et al (2001) Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 51(5):1639–1652

    CAS  PubMed  Google Scholar 

  • Sydenham TV et al (2019) Complete hybrid genome assembly of clinical multidrug-resistant Bacteroides fragilis isolates enables comprehensive identification of antimicrobial-resistance genes and plasmids. Microbial Genom. https://doi.org/10.1099/mgen.0.000312

    Article  Google Scholar 

  • Tandon K et al (2020) Comparative genomics: dominant coral-bacterium Endozoicomonas acroporae metabolizes dimethylsulfoniopropionate (DMSP). ISME J 14(5):1290–1303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Velasco A et al (2020) Look4TRs: a de novo tool for detecting simple tandem repeats using self-supervised hidden Markov models. Bioinformatics 36(2):380–387

    CAS  PubMed  Google Scholar 

  • Viklund J, Ettema TJ, Andersson SG (2012) Independent genome reduction and phylogenetic reclassification of the oceanic SAR11 clade. Mol Biol Evol 29(2):599–615

    CAS  PubMed  Google Scholar 

  • Vinarukwong N et al (2018) Therapeutic use of sulfadimethoxine-ormetoprim for control of Streptococcus agalactiae infection in Nile tilapia (Oreochromis niloticus) fry. Thai J Vet Med 48(3):367–373

    Google Scholar 

  • Wade J, Weber L (2020) Characterization of Tenacibaculum maritimum and mouthrot to inform pathogen transfer risk assessments in British Columbia. DFO Can Sci Advis Sec Res Doc 61

  • Wally N et al (2019) Plasmid DNA contaminant in molecular reagents. Sci Rep 9(1):1652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wattam AR et al (2014) PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res 42(D1):D581–D591

    CAS  PubMed  Google Scholar 

  • Wongsurawat T et al (2020) R-loop-forming sequences analysis in thousands of viral genomes identify a new common element in herpesviruses. Sci Rep 10(1):1–9

    Google Scholar 

  • Wynne JW et al (2020) Microbiome profiling reveals a microbial dysbiosis during a natural outbreak of tenacibaculosis (Yellow mouth) in Atlantic salmon. Front Microbiol 11:586387

    PubMed  PubMed Central  Google Scholar 

  • Xie Z, Tang H (2017) ISEScan: automated identification of insertion sequence elements in prokaryotic genomes. Bioinformatics 33(21):3340–3347

    CAS  PubMed  Google Scholar 

  • Yasuhara-Bell J et al (2020) Comparative genomic analysis confirms five genetic populations of the select agent, Rathayibacter toxicus. Microorganisms 8(3):366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou K, Aertsen A, Michiels CW (2014) The role of variable DNA tandem repeats in bacterial adaptation. FEMS Microbiol Rev 38(1):119–141

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jamia Millia Islamia for providing computational and other support.

Funding

N/A.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: RS and KR; data curation: RS; formal analysis: RS; methodology: RS; project administration: SA; supervision: KR; validation: RS; visualization: RS; roles/writing—original draft: RS; writing—review and editing: KR and SA.

Corresponding author

Correspondence to Khalid Raza.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This study does not directly or indirectly involve humans or other organisms, so ethical responsibilities and approval were not required.

Consent for publication

All authors consented to submit the manuscript to the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1000 kb)

Supplementary file2 (XLSX 526 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satyam, R., Ahmad, S. & Raza, K. Comparative genomic assessment of members of genus Tenacibaculum: an exploratory study. Mol Genet Genomics 298, 979–993 (2023). https://doi.org/10.1007/s00438-023-02031-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-023-02031-3

Keywords

Navigation