Skip to main content
Log in

Evolutionary dynamics of meiotic recombination hotspots regulator PRDM9 in bovids

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Hybrid sterility or reproductive isolation in mammals has been attributed to allelic incompatibilities in a DNA-binding protein PRDM9. Not only is PRDM9 exceptional in being the only known ‘speciation gene’ in vertebrates, but it is also considered to be the fastest evolving gene in the genome. The terminal zinc finger (ZF) domain of PRDM9 specifies genome-wide meiotic recombination hotspot locations in mammals. Intriguingly, PRDM9 ZF domain is highly variable between as well as within species, possibly activating different recombination hotspots. The present study characterized the full-length coding sequence of PRDM9 in cattle and buffalo and explored the diversity of the ZF array in 514 samples from different bovids (cattle, yak, mithun, and buffalo). Substantial numerical and sequence variability were observed in the ZFs, with the number of repeats ranging from 6 to 9 in different bovines. Sequence analysis revealed the presence of 37 different ZFs in cattle, 3 in mithun, 4 in yak, and 13 in buffaloes producing 41 unique PRDM9 alleles in these species. The posterior mean of dN/dS or omega values calculated using Codeml tool of PAMLX identified sites −5, −1, +2, +3, +4, +5, and +6 in the ZF domain to be evolving positively in the studied species. Concerted evolution which typifies the evolution of this gene was consistently evident in all bovines. Our results demonstrate the extraordinary diversity of PRDM9 ZF array across bovines, reinforcing similar observations in other metazoans. The high variability is suggestive of unique repertoire of meiotic recombination hotspots in each species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahlawat S, Sharma P, Sharma R, Arora R, Verma NK, Brahma B, Mishra P, De S (2016a) Evidence of positive selection and concerted evolution in the rapidly evolving PRDM9 zinc finger domain in goats and sheep. Anim Genet. doi:10.1111/age.12487

    PubMed  Google Scholar 

  • Ahlawat S, Sharma P, Sharma R, Arora R, De S (2016b) Zinc finger domain of the PRDM9 gene on chromosome 1 exhibits high diversity in ruminants but its paralog PRDM7 contains multiple disruptive mutations. PLoS One 11(5):e0156159

    Article  PubMed  PubMed Central  Google Scholar 

  • Auton A, Fledel-Alon A, Pfeifer S, Venn O, Ségurel L, Street T, Leffler EM, Bowden R, Aneas I, Broxholme J, Humburg P, Iqbal Z, Lunter G, Maller J, Hernandez RD, Melton C, Venkat A, Nobrega MA, Bontrop R, Myers S, Donnelly P, Przeworski M, McVean G (2012) A fine-scale chimpanzee genetic map from population sequencing. Science 336:193–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker CL, Kajita S, Walker M, Petkov PM, Paigen K (2014) PRDM9 binding organizes hotspot nucleosomes and limits Holliday junction migration. Genome Res 24:724–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker CL, Petkova P, Walker M, Flachs P, Mihola O, Trachtulec Z, Petkov PM, Paigen K (2015) Multimer formation explains allelic suppression of PRDM9 recombination hotspots. PLoS Genet 11:e1005512

    Article  PubMed  PubMed Central  Google Scholar 

  • Barton NH, Charlesworth B (1998) Why sex and recombination? Science 281:1986–1990

    Article  CAS  PubMed  Google Scholar 

  • Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C, Przeworski M, Coop G, de Massy B (2010) PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327:836–840

    Article  CAS  PubMed  Google Scholar 

  • Berg IL, Neumann R, Lam KW, Sarbajna S, Odenthal-Hesse L, May CA, Jeffreys AJ (2010) PRDM9 variation strongly influences recombination hot-spot activity and meiotic instability in humans. Nat Genet 42:859–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg IL, Neumann R, Sarbajna S, Odenthal-Hesse L, Butler NJ, Jeffreys AJ (2011) Variants of the protein PRDM9 differentially regulate a set of human meiotic recombination hotspots highly active in African populations. Proc Natl Acad Sci USA 108:12378–12383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borel C, Cheung F, Stewart H, Koolen DA, Phillips C, Thomas NS, Jacobs PA, Eliez S, Sharp AJ (2012) Evaluation of PRDM9 variation as a risk factor for recurrent genomic disorders and chromosomal non-disjunction. Human Genet 131:1519–1524

    Article  CAS  Google Scholar 

  • Brick K, Smagulova F, Khil P, Camerini-Otero RD, Petukhova GV (2012) Genetic recombination is directed away from functional genomic elements in mice. Nature 485:642–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buard J, Rivals E, Dunoyer de Segonzac D, Garres C, Caminade P, de Massy B, Boursot P (2014) Diversity of PRDM9 zinc finger array in wild mice unravels new facets of the evolutionary turnover of this coding minisatellite. PLoS One 9:e85021

    Article  PubMed  PubMed Central  Google Scholar 

  • Coop G, Przeworski M (2007) An evolutionary view of human recombination. Nat Rev Genet 8:23–34

    Article  CAS  PubMed  Google Scholar 

  • Dobzhansky T (1951) Genetics and the origin of species. Columbia University, New York

    Google Scholar 

  • Francino MP, Ochman H (1997) Strand asymmetries in DNA evolution. Trends Genet 13:240–245

    Article  CAS  PubMed  Google Scholar 

  • Graffelman J, Balding DJ, Gonzalez-Neira A, Bertranpetit J (2007) Variation in estimated recombination rates across human populations. Human Genet 122:301–310

    Article  Google Scholar 

  • Gray MM, Granka JM, Bustamante CD, Sutter NB, Bokyo AR, Zhu L, Ostrander EA, Wayne RK (2009) Linkage disequilibrium and demographic history of wild and domestic canids. Genetics 181:1493–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groeneveld LF, Atencia R, Garriga RM, Vigilant L (2012) High diversity at PRDM9 in chimpanzees and bonobos. PLoS One 7:e39064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic acids symposium series 41:95–98

  • Hayashi K, Yoshida K, Matsui Y (2005) A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature 438:374–378

    Article  CAS  PubMed  Google Scholar 

  • Hinch AG, Tandon A, Patterson N, Song Y, Rohland N, Palmer CD, Chen GK, Wang K, Buxbaum SG, Akylbekova EL, Aldrich MC, Ambrosone CB, Amos C, Bandera EV, Berndt SI, Bernstein L, Blot WJ, Bock CH, Boerwinkle E, Cai Q, Caporaso N, Casey G, Cupples LA, Deming SL, Diver WR, Divers J, Fornage M, Gillanders EM, Glessner J, Harris CC, Hu JJ, Ingles SA, Isaacs W, John EM, Kao WH, Keating B, Kittles RA, Kolonel LN, Larkin E, Le Marchand L, McNeill LH, Millikan RC, Murphy A, Musani S, Neslund-Dudas C, Nyante S, Papanicolaou GJ, Press MF, Psaty BM, Reiner AP, Rich SS, Rodriguez-Gil JL, Rotter JI, Rybicki BA, Schwartz AG, Signorello LB, Spitz M, Strom SS, Thun MJ, Tucker MA, Wang Z, Wiencke JK, Witte JS, Wrensch M, Wu X, Yamamura Y, Zanetti KA, Zheng W, Ziegler RG, Zhu X, Redline S, Hirschhorn JN, Henderson BE, Taylor HA Jr, Price AL, Hakonarson H, Chanock SJ, Haiman CA, Wilson JG, Reich D, Myers SR (2011) The landscape of recombination in African Americans. Nature 476:170–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussin J, Sinnett D, Casals F, Idaghdour Y, Bruat V, Saillour V, Healy J, Grenier JC, de Malliard T, Busche S, Spinella JF, Larivière M, Gibson G, Andersson A, Holmfeldt L, Ma J, Wei L, Zhang J, Andelfinger G, Downing JR, Mullighan CG, Awadalla P (2013) Rare allelic forms of PRDM9 associated with childhood leukemogenesis. Genome Res 23:419–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irie S, Tsujimura A, Miyagawa Y, Ueda T, Matsuoka Y, Matsui Y, Okuyama A, Nishimune Y, Tanaka H (2009) Single-nucleotide polymorphisms of the PRDM9 (MEISETZ) gene in patients with nonobstructive azoospermia. J Androl 30:426–431

    Article  CAS  PubMed  Google Scholar 

  • Jeffreys AJ, Cotton VE, Neumann R, Lam KW (2013) Recombination regulator PRDM9 influences the instability of its own coding sequence in humans. Proc Natl Acad Sci USA 110:600–605

    Article  CAS  PubMed  Google Scholar 

  • Kauppi L, Jeffreys AJ, Keeney S (2004) Where the crossovers are: recombination distributions in mammals. Nat Rev Genet 5:413–424

    Article  CAS  PubMed  Google Scholar 

  • Khatun M, Kaur S, Kanchan Mukhopadhyay CS (2013) Subfertility problems leading to disposal of breeding bulls. Asian-Australas J Anim Sci 26:303–308

    Article  PubMed  PubMed Central  Google Scholar 

  • Kong A, Thorleifsson G, Gudbjartsson DF, Masson G, Sigurdsson A, Jonasdottir A, Walters GB, Jonasdottir A, Gylfason A, Kristinsson KT, Gudjonsson SA, Frigge ML, Helgason A, Thorteinsdottir U, Stefansson K (2010) Fine-scale recombination rate differences between sexes, populations and individuals. Nature 467:1099–1103

    Article  CAS  PubMed  Google Scholar 

  • Kono H, Tamura M, Osada N, Suzuki H, Abe K, Moriwaki K, Ohta K, Shiroishi T (2014) PRDM9 polymorphism unveils mouse evolutionary tracks. DNA Res. doi:10.1093/dnares/dst059

    PubMed  PubMed Central  Google Scholar 

  • Lou YN, Liu WJ, Wang CL, Huang L, Jin SY, Lin YQ, Zheng YC (2014) Histological evaluation and PRDM9 expression level in the testis of sterile male cattle-yaks. Livestock Sci 160:208–213

    Article  Google Scholar 

  • Ma L, O’Connell JR, VanRaden PM, Shen B, Padhi A, Sun C, Bickhart DM, Cole JB, Null DJ, Liu GE, Da Y, Wiggans GR (2015) Cattle sex-specific recombination and genetic control from a large pedigree analysis. PLoS Genet 11:e1005387

    Article  PubMed  PubMed Central  Google Scholar 

  • Mandal DK, Tyagi S (2004) Pre-copulatory behaviour of Sahiwal bulls during semen collection and effects of age and season on their sexual performance. Indian J Dairy Sci 57:334–338

    Google Scholar 

  • Masly J, Jones C, Noor M, Locke J, Orr H (2006) Gene transposition as a cause of hybrid sterility in Drosophila. Science 313:1448–1450

    Article  CAS  PubMed  Google Scholar 

  • Mihola O, Trachtulec Z, Vlcek C, Schimenti JC, Forejt J (2009) A mouse speciation gene encodes a meiotic histone H3 methyltransferase. Science 323:373–375

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto T, Koh E, Sakugawa N, Sato H, Hayashi H, Namiki M, Sengoku K (2008) Two single nucleotide polymorphisms in PRDM9 (MEISETZ) gene may be a genetic risk factor for Japanese patients with azoospermia by meiotic arrest. J Assist Reprod Genet 25:553–557

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay CS, Gupta AK, Yadav BR, Khate K, Raina VS, Mohanty TK, Dubey PP (2012) Subfertility in males: an important cause of bull disposal in bovines. Asian-Australas J Anim Sci 23:450–455

    Article  Google Scholar 

  • Muller H (1942) Isolating mechanisms, evolution, and temperature. In: T D (ed.) Biological Symposia. Jaques Cattell Press, Lancaster, p 71–125

  • Myers S, Bowden R, Tumian A, Bontrop RE, Freeman C, MacFie TS, McVean G, Donnelly P (2010) Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination. Science 327:876–879

    Article  CAS  PubMed  Google Scholar 

  • Neale MJ (2010) PRDM9 points the zinc finger at meiotic recombination hotspots. Genome Biol 11:104–106

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliver PL, Goodstadt L, Bayes JJ, Birtle Z, Roach KC, Phadnis N, Beatson SA, Lunter G, Malik HS, Ponting CP (2009) Accelerated evolution of the PRDM9 speciation gene across diverse metazoan taxa. PLoS Genet 5:e1000753

    Article  PubMed  PubMed Central  Google Scholar 

  • Parvanov ED, Petkov PM, Paigen K (2010) PRDM9 controls activation of mammalian recombination hotspots. Science 327:835–837

    Article  CAS  PubMed  Google Scholar 

  • Perez D, Wu C (1995) Further characterization of the Odysseus locus of hybrid sterility in Drosophila: one gene is not enough. Genetics 140:201–206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phadnis N, Orr H (2009) A single gene causes both male sterility and segregation distortion in Drosophila hybrids. Science 323:376–379

    Article  CAS  PubMed  Google Scholar 

  • Pratto F, Brick K, Khil P, Smagulova F, Petukhova GV, Camerini-Otero RD (2014) Recombination initiation maps of individual human genomes. Science 346:1256442

    Article  PubMed  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory, New York

    Google Scholar 

  • Sandor C, Li W, Coppieters W, Druet T, Charlier C, Georges M (2012) Genetic variants in REC8, RNF212, and PRDM9 influence male recombination in cattle. PLoS Genet 8:e1002854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz JJ, Roach DJ, Thomas JH, Shendure J (2014) Primate evolution of the recombination regulator PRDM9. Nat Commun 5:4370–4376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539–544

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh A (2005) Crossbreeding of cattle for increasing milk production in India: a review. Indian J Anim Sci 75:383–390

    Google Scholar 

  • Steiner CC, Ryder OA (2013) Characterization of PRDM9 in equids and sterility in mules. PLoS One 8:e61746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stothard P (2000) The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 8:1102–1104

    Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Thomas JH, Emerson RO, Shendure J (2009) Extraordinary molecular evolution in the PRDM9 fertility gene. PLoS One 4:e8505

    Article  PubMed  PubMed Central  Google Scholar 

  • Winckler W, Myers SR, Richter DJ, Onofrio RC, McDonald GJ, Bontrop RE, McVean GA, Gabriel SB, Reich D, Donnelly P, Altshuler D (2005) Comparison of fine-scale recombination rates in humans and chimpanzees. Science 308:107–111

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Yang Z (2013) PAMLX: a graphical user interface for PAML. Mol Biol Evol 30:723–2724

    Article  Google Scholar 

  • Yang Z, Wong WSW, Nielsen R (2005) Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118

    Article  CAS  PubMed  Google Scholar 

  • Zhang QB, Li QF, Li JH, Li XF, Liu ZS, Song D, Xie Z (2008) b-DAZL: a novel gene in bovine spermatogenesis. Prog Nat Sci 18:1209–1218

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Indian Council of Agricultural Research, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonika Ahlawat.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahlawat, S., De, S., Sharma, P. et al. Evolutionary dynamics of meiotic recombination hotspots regulator PRDM9 in bovids. Mol Genet Genomics 292, 117–131 (2017). https://doi.org/10.1007/s00438-016-1260-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-016-1260-6

Keywords

Navigation