Skip to main content
Log in

Telomere length change plateaus at 4 years of age in Latino children: associations with baseline length and maternal change

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Telomeres are the protective complexes at the end of chromosomes, required for genomic stability. Little is known about predictors of attrition in young children or the relationship between parental and child patterns of telomere change. Telomere length was assessed twice over one year, at 4 and at 5 years of age, in Latino preschool children (n = 77) and their mothers (n = 70) in whole blood leukocytes. Maternal and child rates of attrition during the same time period were compared in 70 mother–child pairs. More children showed lengthened telomeres over one year compared to their mothers and very few children showed attrition (2.6 %). Approximately 31 % of children and 16 % of mothers displayed lengthening over one year while 66 % of children showed maintenance in contrast with 74 % of mothers. The strongest predictor for child telomere length change was child’s baseline telomere length (r = −0.61, p < 0.01). Maternal rate of change was associated with child rate of change (r = 0.33, p < 0.01). After controlling for child baseline telomere length, the relationship between child and maternal rate of change trended towards significance (Coeff = 0.20, 95 % CI −0.03 to 0.43; p = 0.08). We found primarily maintenance and lengthening from 4 to 5 years of age in children, with minimal telomere attrition, indicating that most of the telomere loss happens in the first 4 years, plateauing by age 4. Lastly, we found close to 10 % of the variance in rate of change in children shared by mothers. While some of this shared variance is genetic, there are likely environmental factors that need to be further identified that impact rate of telomere length change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aubert G, Baerlocher GM, Vulto I, Poon SS, Lansdorp PM (2012) Collapse of telomere homeostasis in hematopoietic cells caused by heterozygous mutations in telomerase genes. PLoS Genet 8(5):e1002696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aviv A, Chen W, Gardner JP, Kimura M, Brimacombe M, Cao X, Srinivasan SR, Berenson GS (2009) Leukocyte telomere dynamics: longitudinal findings among young adults in the Bogalusa Heart Study. Am J Epidemiol 169(3):323–329

    Article  PubMed  PubMed Central  Google Scholar 

  • Broer L, Codd V, Nhyholt DR, Deelen J, Mangino M, Willemsen G, Albrecht E, Amin N, Beekman M, de Geus EJ, Henders A, Nelson CP, Steves CJ, Wright MJ, de Craen AJ, Isaacs A, Matthews et al (2013) Meta-analysis of telomere length in 19,713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. Eur J Hum Genet 21(10):1163–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buxton JL, Walters RG, Visvikis-Siest S, Meyre D, Froguel P, Plakemore AI (2011) Childhood obesity is associated with shorter leukocyte telomere length. J Clin Endocrinol Metab 96(5):1500–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cawthon RM (2002) Telomere measurement by quantitative PCR. Nucleic Acids Res 30(10):e47

    Article  PubMed  PubMed Central  Google Scholar 

  • Cawthon RM (2009) Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res 37(3):e21

    Article  PubMed  PubMed Central  Google Scholar 

  • Drury SS, Theall K, Gleason MM, Smyke AT, De Vivo I, Wong JY et al (2012) Telomere length and early severe social deprivation: linking early adversity and cellular aging. Mol Psychiatry 17(7):719–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drury SD, Esteves K, Hatch V, Woodbury M, Borne S, Adamski A, Theall KP (2015) Setting the trajectory: racial disparities in newborn telomere length. J Pediatr 166:1181–1186

    Article  PubMed  PubMed Central  Google Scholar 

  • Epel ES, Merkin SS, Cawthon R, Blackburn EH, Adler NE, Pletcher MJ, Seeman TE (2008) The rate of leukocyte telomere shortening predicts mortality from cardiovascular disease in elderly men. Aging (Albany NY) 1(1):81–88

    Article  Google Scholar 

  • Farzaneh-Far R, Lin J, Epel E, Lapham K, Blackburn E, Whooley MA (2010) Telomere length trajectory and its determinants in persons with coronary artery disease: longitudinal findings from the heart and soul study. PLoS ONE 5(1):e8612. doi:10.1371/journal.pone.0008612

    Article  PubMed  PubMed Central  Google Scholar 

  • Frenck RW Jr, Blackburn EH, Shannon KM (1998) The rate of telomere sequence loss in human leukocytes varies with age. Proc Natl Acad Sci USA 95:5607–5610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fyhrquist F, Saijonmaa O, Strandbert T (2013) The roles of senescence and telomere shortening in cardiovascular disease. Nat Rev Cardiol 10(5):274–283

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Calzon S, Moleres A, Marcos A, Campoy C, Moreno LA, Azcona-Sanjulian MC, Martinez-Gonzalez MA, Martinez JA, Zalba G, Marti A, EVASYON Study Group (2014) Telomere length as a biomarker for adiposity changes after a multidisciplinary intervention in overweight adolescents: the EVASYON study. PLOS One 9(2):e892828. doi:10.1371/journal.pone.0089828 (eCollection 2014)

  • Hjelmborg JB, Dalgard C, Moller S, Steenstrup T, Kimura M, Christensen K, Kyvik KO, Aviv A (2015a) The heritability of leukocyte telomere length dynamics. J Med Genet 52(5):297–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hjelmborg JB, Dalgard C, Mangino M, Spector TD, Halekoh U, Moller S, Kimura M, Horvath U et al (2015b) Paternal age and telomere length in twins: the germ stem cell selection paradigm. Aging Cell 14(4):701–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huda N, Tanaka T, Herbert BS, Reed T, Gilley D (2007) Shared environmental factors associated with telomere length maintenance in elderly male twins. Aging Cell 6(5):709–713

    Article  CAS  PubMed  Google Scholar 

  • Huzen J, Wong LS, van Veldhuisen DJ, Samani NJ, Zwinderman AH, Codd V, Cawthon RM, Benus GF, van der Horst IC, Navis G, Bakker SJ, Gansevoort RT, de Jong PE, Hillege HL, van Gilst WH, de Boer RA, van der Harst P (2014) Telomere length loss due to smoking and metabolic traits. J Intern Med 275(2):155–163

    Article  CAS  PubMed  Google Scholar 

  • Kananen L, Surakka I, Pirkola S, Suvisaari J, Lonnqvist J, Peltonen L, Ripatti S, Hovatt I (2010) Childhood adversities are associated with shorter telomere length at adult age both in individuals with an anxiety disorder and controls. PLoS ONE 5:e10826. doi:10.1371/journal.pone.0010826

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuczmarski RJ, Ogden CL, Guo SS et al (2000) CDC growth charts for the United States: Methods and development. National Center for Health Statistics. Vital Health Stat 11(246):2002

  • Lansdorp PM (1995) Telomere length and proliferation potential of hematopoietic stem cells. J Cell Sci 108(Pt 1):1–6

    CAS  PubMed  Google Scholar 

  • Lin J, Epel E, Cheon J, Kroenke C, Sinclair E, Bigos M, Wolkowitz O, Mellon S, Blackburn E (2010) Analyses and comparisons of telomerase activity and telomere length in human T and B cells: insights for epidemiology of telomere maintenance. J Immunol Methods 352(1–2):71–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maffeis C, Pietrobelli A, Grezzani A, Provera S, Tato L (2001) Waist circumference and cardiovascular risk factors in prepubertal children. Obesity Res 9:179–187

    Article  CAS  Google Scholar 

  • Masi S, D’Aiuto F, Martin-Ruiz C, Kahn T, Wong A, Ghosh AK, Whincup P, Kuh D, Hughes A, von Zglinicki T, Hardy R, Deanfield JE (2014) NHD scientific and data collection teams. Rate of telomere shortening and cardiovascular damage: a longitudinal study in the 1946 British Birth Cohort. Eur Heart J 35(46):3296–3303

  • Mayer S, Bruderlein S, Perner S, Waibel I, Holdenried A, Ciloglu N, Hasel C, Mattfeldt T, Nielsen KV, Moller P (2006) Sex-specific telomere length profiles and age-dependent erosion dynamics of individual chromosome arms in humans. Cytogenet Genome Res 112(3–4):194–201

    Article  CAS  PubMed  Google Scholar 

  • Monickaraj F, Gokulakrishnan K, Prabu P, Sathishkumar C, Anjana RM, Rajkumar JS, Mohan V, Balasubramanyam M (2012) Convergence of adipocyte hypertrophy, telomere shortening and hypoadiponectinemia in obese patients with type 2 diabetes. Clin Biochem 45(16–17):1432–1438

    Article  CAS  PubMed  Google Scholar 

  • Moreno LA, Fleta J, Mur L, Sarria A, Bueno M (1998) Fat distribution in obese and nonobese children and adolescents. J Pediatr Gastroenterol Nutr 27(2):176–180

    Article  CAS  PubMed  Google Scholar 

  • Nordfjall K, Larefalk A, Lindgren P, Holmberg D, Roos G (2005) Telomere length and heredity: indications of paternal inheritance. Proc Natl Acad Sci USA 102(45):16374–16378

    Article  PubMed  PubMed Central  Google Scholar 

  • Nordfjall K, Svenson U, Norrback KF, Adolfsoon R, Lenner P and G Roos (2009) Individual blood cell telomere attrition rate is telomere length dependent. PLOS Genetics 5(2): e1000375. doi:10.1371/journal.pgen.1000375 (Epub 2009 Feb 13)

  • Philips AC, Robertson T, Carroll D, Der G, Shiels PG, McGlynn L, Benzeval M (2013) Do symptoms of depression predict telomere length? Evidence from the west of Scotland twenty-07 study. Psychosom Med 75(3):288–296

    Article  Google Scholar 

  • Prescott J, Kraft P, Chasman DI, Savage SA, Mirabello L, Berndt SI, Weissfeld JL, Han J, Hayes RB, Chanock SJ, Hunter DJ, De Vivo I (2011) Genome-wide association study of relative telomere length. PLoS ONE 6(5):e19635. doi:10.1371/journal.pone.0019635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prescott J, Du M, Wong JYY, Han J, De Vivo I (2012) Paternal age at birth is associated with offspring leukocyte telomere length in the nurses’ health study. Hum Reprod 27(12):3622–3631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puterman E, Lin J, Krauss J, Blackburn EH, Epel ES (2015) Determinants of telomere attrition over 1 year in healthy older women: stress and health behaviors matter. Mol Psychiatry 20(4):529–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raschenberger J, Kollerits B, Ritchie J, Lane B, Kalra PA, Ritz E, Kronenberg F (2015) Association of relative telomere length with progression of chronic kidney disease in two cohorts: effect modification by smoking and diabetes. Sci Rep 5:11887: doi:10.1038/srep11887

  • Revesz D, Milaneschi Y, Verhoeven JE, Penninx BW (2014a) Telomere length as a marker of cellular aging is associated with metabolic syndrome. J Clin Endocrinol Metab 99(12):4607–4615

    Article  CAS  PubMed  Google Scholar 

  • Revesz D, Verhoeven JE, Milaneschi Y, de Geus EJ, Wolkowitz OM, Pennix BW (2014b) Dysregulated physiological stress systems and accelerated cellular aging. Neurobiol Aging 35(6):1422–1430

    Article  CAS  PubMed  Google Scholar 

  • Revesz D, Milaneschi Y, Verhoeven JE, Lin J, Pennix BW (2015) Longitudinal associations between metabolic syndrome components and telomere shortening. J Clin Endocrinol Metab 100(8):3050–3059

    Article  CAS  PubMed  Google Scholar 

  • Robertson JD, Gale RE, Wynn RF, Dougal M, Linch DC, Testa NG, Chopra R (2000) Dynamics of telomere shortening in neutrophils and T lymphocytes during ageing and the relationship to skewed X chromosome inactivation patterns. Br J Haematol 109(2):272–279

    Article  CAS  PubMed  Google Scholar 

  • Rufer N, Brummendorf TH, Kolvraa S, Bischoof C, Christensen K, Wadsworth L, Schulzer M, Lansdorp PM (1999) Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J Exp Med 190:157–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shalev I, Moffitt TE, Sugden K, Williams B, Houts RM, Danese A, Mill J, Arseneault L, Caspi A (2013) Exposure to violence during childhood is associated with telomere erosion from 5 to 10 years of age: a longitudinal study. Mol Psychiatry 18(5):576–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shalev I, Caspi A, Ambler A, Belsky DW, Chapple S, Cohen HJ, Israel S, Poulton R, Ramrakha S, Rivera CD, Sugden K, Williams B, Wolke D, Moffitt TE (2014) Perinatal complications and aging indicators by midlife. Pediatrics 134(5):e1315–e1323

    Article  PubMed  PubMed Central  Google Scholar 

  • Slagboom PE, Droog S, Boomsma DI (1994) Genetic determination of telomere size in humans: a twin study of three age groups. Am J Hum Genet 55:876–882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stathopoulou MG, Petrelis AM, Buxton JL, Froguel P, Blackemore AI, Visvikis-Siest S (2015) Genetic determinants of leucocyte telomere length in children: a neglected and challenging field. Paediatr Perinat Epidemiol 29(2):146–150

    Article  PubMed  Google Scholar 

  • Tyrka AR, Price LH, Kao HT, Porton B, Marsella SA, Carpenter LL (2010) Childhood maltreatment and telomere shortening: preliminary support for an effect of early stress on cellular aging. Biol Psychiatry 67:531–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E, Cherkas LF, Aviva A, Spector TD (2005) Obesity, cigarette smoking, and telomere length in women. Lancet 366(9486):662–664

    Article  CAS  PubMed  Google Scholar 

  • Willeit P, Raschenberger J, Heydon EE, Tsimikas S, Haun M, Mayr A, Weger S, Witztum JL, Butterworth AS, Willeit J, Kronenberg F, Kiechl S (2014) Leucocyte telomere length and risk of type 2 diabetes mellitus: new prospective cohort study and literature-based meta-analysis. PLoS ONE 9(11):e112483. doi:10.1371/journal.pone.0112483 (eCollection 2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • Wojcicki JM, Holbrook K, Lustig RH, Caughey AB, Munoz RF, Heyman MB (2011a) Infant formula, tea, and water supplementation of Latino Infants at 4–6 Weeks Postpartum. J Human Lact 27(2):122–130

    Article  Google Scholar 

  • Wojcicki JM, Holbrook K, Lustig RH, Epel E, Caughey AB, Munoz RF, Shiboski SC, Heyman MB (2011b) Chronic maternal depression is associated with reduced weight gain in Latino infants from birth to 2 years of age. PLoS ONE 6(2):e16737. doi:10.1371/journal.pone.0016737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xi B, Mi J, Zhao M, Zhang T, Jia C, Li J, Zeng T et al (2011) Trends in abdominal obesity among US children and adolescents. Pediatrics 134(2):e334

  • Xu J, Ye J, Wu Y, Zhang H, Luo Q, Han C, Ye X, Wang H, He J, Huang H, Liu Y, Dong M (2014) Reduced fetal telomere length in gestational diabetes. PLOS One 9(1):e866161. doi:10.1371/journal.pone.0086161. (eCollection 2014)

  • Zanet DL, Saberi S, Oliveira L, Sattha B, Gadawski I, Cote HC (2013) Blood and dried blood spot telomere length measured by qPCR: assay considerations. PLoS ONE 8(2):e57787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeichner SL, Palumbo P, Feng YR, Xiao X, Gee D, Sleasman J, Goodenow M, Biggar R, Dimitrov D (1999) Rapid telomere shortening in children. Blood 93(9):2824–2830

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by NIH NIDDK 080825, The Robert Wood Johnson Foundation Health and Society Scholars Program, the NASPGHAN Foundation, the Hellman Family Foundation and UCSF CTSI-SOS. This research was also supported by NIH/NCRR UCSF-CTSI Grant Number UL1 RR024131.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet M. Wojcicki.

Ethics declarations

Conflict of interest

JMW has no conflict of interest, SS has no conflict of interest, MH has no conflict of interest, DE has no conflict of interest, JL is a consultant to Telomere Diagnostics Inc., formerly Telomere Health, and owns stock in the company, and the company did not play any role in this research, EB has no conflict of interest and EE has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the UCSF IRB (Institutional Research Board) research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants in the study.

Additional information

Communicated by S. Hohmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wojcicki, J.M., Shiboski, S., Heyman, M.B. et al. Telomere length change plateaus at 4 years of age in Latino children: associations with baseline length and maternal change. Mol Genet Genomics 291, 1379–1389 (2016). https://doi.org/10.1007/s00438-016-1191-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-016-1191-2

Keywords

Navigation