Skip to main content
Log in

Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Modern sugarcane cultivars (Saccharum spp., 2n = 100–120) are complex polyploids derived from interspecific hybridization performed a century ago between the sugar-producing species S. officinarum L. and the wild species S. spontaneum L. Using genomic in situ hybridization, we revealed that between 15 and 27.5% of the genome of modern cultivars is derived from S. spontaneum, including 10–23% of entire chromosomes from this wild species and 8–13% chromosomes derived from interspecific recombination. We confirmed the occurrence of 2n + n transmission in crosses and first backcrosses between these two species and demonstrated that this also can occur in crosses between S. officinarum and modern cultivars. We analysed five S. officinarum clones with more than 80 chromosomes and demonstrated that they were derived from interspecific hybridization supporting the classical view that this species is characterized by 2n = 80. We also illustrated the complementarities between molecular cytogenetics and genetic mapping approaches for analysing complex genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Q165 is protected by plant breeder’s rights in Australia.

References

  • Aitken K, Jackson PA, McIntyre CL (2005) A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theor Appl Genet 110:789–801

    Article  CAS  PubMed  Google Scholar 

  • Aitken KS, Li J-C, Jackson P, Piperidis G, McIntyre CL (2006) AFLP analysis of genetic diversity within Saccharum officinarum and comparison with sugarcane cultivars. Aust J Agric Res 57:1167–1184

    Article  CAS  Google Scholar 

  • Aitken K, Jackson PA, McIntyre CL (2007) Construction of a genetic linkage map for Saccharum officinarum incorporating both simplex and duplex markers to increase genome coverage. Genome 50:742–756

    Article  CAS  PubMed  Google Scholar 

  • Berding N, Koike H (1980) Germplasm conservation of the Saccharum complex: a collection from the Indonesian Archipelago. Hawaiian Planters’ Record 59(7):87–176 (Hawaiian Sugar Planters’ Association)

    Google Scholar 

  • Berding N, Roach BT (1987) Germplasm collection, maintenance, and use. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, New York, pp 143–210

    Google Scholar 

  • Bhat SR, Gill SS (1985) The implications of 2n egg gametes in mobilization and breeding of sugarcane. Euphytica 34:377–384

    Article  Google Scholar 

  • Brandes EW (1929) Natl. Geo 56:253–332

    Google Scholar 

  • Brandes E (1956) Origin, dispersal and use in breeding of the Melanesian garen sugarcane and their derivatives, Saccharum officinarum L. Proc Int Soc Sugarcane Technol 9:709–750

    Google Scholar 

  • Bremer G (1961) Problems in breeding and cytology of sugar cane. Euphytica 10:59–78

    Article  Google Scholar 

  • Brummer EC, Cazcarro PM, Luth D (1999) Ploidy determination of alfalfa germplasm accessions using flow cytometry. Crop Sci 39:1202–1207

    Google Scholar 

  • Burner DM (1997) Chromosome transmission and meiotic behaviour in various sugarcane crosses. J Am Soc Sugar Cane Technol 17:38–50

    Google Scholar 

  • Burner DM, Legendre BL (1993) Chromosome transmission and meiotic stability of sugarcane (Saccharum spp.) hybrid derivatives. Crop Sci 33:600–606

    Google Scholar 

  • Cuadrado A, Acevedo R, Díaz Moreno, de la Espina S, Jouve N, de la Torre C (2004) Genome remodeling in three modern S. officinarum × S. spontaneum sugarcane cultivars. J Exp Bot 55:847–854

    Article  CAS  PubMed  Google Scholar 

  • D’Hont A (2005) Unravelling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana. Cytogenet Genome Res 109:27–33

    Article  PubMed  Google Scholar 

  • D’Hont A, Rao P, Feldmann P, Grivet L, Islam-Faridi N, Taylor P, Glaszmann J-C (1995) Identification and characterization of intergeneric hybrids, S officinarum × Erianthus arundinaceus, with molecular markers and in situ hybridization. Theor Appl Genet 91:320–326

    Google Scholar 

  • D’Hont A, Grivet L, Feldmann P, Rao S, Berding N, Glaszmann J-C (1996) Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol Gen Genet 250:405–413

    PubMed  Google Scholar 

  • D’Hont A, Ison D, Alix K, Roux C, Glaszmann J-C (1998) Determination of basic chromosome number in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome 41:221–225

    Article  Google Scholar 

  • D’Hont A, Paulet F, Glaszmann J-C (2002) Oligoclonal interspecific origin of ‘North Indian’ and ‘Chinese’ sugarcanes. Chromosome Res 10:253–262

    Article  PubMed  Google Scholar 

  • Daniels J, Roach BT (1987) Taxonomy and evolution. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, New York, pp 7–84

    Google Scholar 

  • Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885

    Article  CAS  PubMed  Google Scholar 

  • Grivet L, Arruda P (2001) Sugarcane genomics: depicting the complex genome of an important tropical crop. Curr Opin Plant Biol 5:122–127

    Article  Google Scholar 

  • Grivet L, D’Hont A, Roques D, Feldmann P, Lanaud C, Glaszmann J-C (1996) RFLP mapping in cultivated sugarcane (Saccharum spp.): genome organization in a highly polyploid and aneuploid inter-specific hybrid. Genetics 142:987–1000

    CAS  PubMed  Google Scholar 

  • Grivet L, Glaszmann JC, D’Hont A (2005) Molecular evidences for sugarcane evolution and domestication. In: Motley T, Zerega N, Cross H (eds) Darwin’s harvest. New approaches to the origins, evolution, and conservation of crops. Columbia University Press, USA

    Google Scholar 

  • Hoarau J-Y, Offmann B, D’Hont A, Risterucci A-M, Roques D, Glaszmann J-C, Grivet L (2001) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). I. Genome mapping with AFLP markers. Theor Appl Genet 103:84–97

    Article  CAS  Google Scholar 

  • Irvine JE (1999) Saccharum species as horticultural classes. Theor Appl Genet 98:186–194

    Article  Google Scholar 

  • Jannoo N, Grivet L, Seguin M, Paulet F, Domaingue R, Rao PS, Dookun A, D’Hont A, Glaszmann J-C (1999) Molecular investigation of the genetic base of sugarcane cultivars. Theor Appl Genet 99:171–184

    Article  CAS  Google Scholar 

  • Jannoo N, Grivet L, Chantret N, Garsmeur O, Glaszmann Arruda P, D’Hont A (2007) Orthologous comparison in a gene-rich region among grasses reveals stability in the sugarcane polyploid genome. Plant J 50(4):574–585

    Article  CAS  PubMed  Google Scholar 

  • Kandasami PA, Sreenivasan TV, Ramana Rao TC, Palanichami K, Natarajan BV, Alexander KC, Madhusudana Rao M, Mohan Raj D (1983) Catalogue on sugarcane genetic resources 1. Saccharum spontaneum L. Sugarcane breeding Institute (Indian Council of Agricultural Research), Coimbatore

    Google Scholar 

  • Le Cunff L, Garsmeur O, Raboin L-M, Pauquet J, Telismart Selvi A, Grivet L, Philippe R, Begum D, Deu M, Costet L, Wing R, Glaszmann D’Hont A (2008) Diploid/polyploid syntenic shuttle mapping and haplotype-specific chromosome walking toward a rust resistance gene (Bru1) in highly polyploid sugarcane (2n ∼ 12x ∼ 115). Genetics 180:649–660

    Article  PubMed  Google Scholar 

  • Lu YH, D’Hont A, Walker DIT, Rao PS, Feldmann P, Glaszmann J-C (1994) Relationships among ancestral species of sugarcane revealed with RFLP using single copy maize nuclear probes. Euphytica 78:7–18

    Article  Google Scholar 

  • Ming R, Liu S-C, Lin Y-R, Da Silva J, Wilson W, Braga D, Van Deynze A (1998) Detailed alignment of Saccharum and Sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics 150:1663–1682

    CAS  PubMed  Google Scholar 

  • Ming R, Liu S-C, Moore PH, Irvine JE, Paterson AH (2001) QTL analysis in a complex autopolyploid: genetic control of sugar content in sugarcane. Genome Res 11:2075–2084

    Article  CAS  PubMed  Google Scholar 

  • Ming R, Wang Y-W, Draye X, Moore PH, Irvine JE, Paterson AH (2002) Molecular dissection of complex traits in autopolyploids: mapping QTLs affecting sugar yield and related traits in sugarcane. Theor Appl Genet 105:332–345

    Article  CAS  PubMed  Google Scholar 

  • Nair MK (1975) Cytogenetics of Saccharum officinarum L., Saccharum spontaneum L. and S. officinarum × S. spontaneum hybrids IV. Chromosome number and meiosis in S. officinarum × S. spontaneum hybrids. Caryologia 28:1–14

    Google Scholar 

  • Piperidis G, Christopher MJ, Carroll BJ, Berding N, D’Hont A (2000) Molecular contribution to selection of inter-generic hybrids between sugarcane and the wild species Erianthus arundinaceus. Genome 43:1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Price S (1963) Cytogenetics of modern sugar canes. Econ Bot 17:97–106

    Google Scholar 

  • Price S (1965) Interspecific hybridization in sugarcane breeding. Proc Int Soc Sugar Cane Technol 12:1021–1026

    Google Scholar 

  • Raboin LM, Oliveira KM, Le Cunff L, Telismart H, Roques D, Butterfield MK, Hoarau J-Y, D’Hont A (2006) Genetic mapping in sugarcane, a high polyploid, using bi-parental progeny : identification of a gene controlling stalk colour and a new rust resistance gene. Theor Appl Genet 112(7):1382–1391

    Article  CAS  PubMed  Google Scholar 

  • Reffay N, Jackson PA, Aitken KA, D’Hont A, Besse P, McIntyre CL (2005) Characterisation of genome regions incorporated from an important wild relative into Australian sugarcane. Mol Breeding 15:367–381

    Article  CAS  Google Scholar 

  • Roach BT (1969) Cytological studies in Saccharum chromosome transmission in inter-specific and inter-generic crosses. Proc Int Soc Sugar Cane Technol 13:901–920

    Google Scholar 

  • Rossi M, Araujo P, Paulet F, Garsmeur O, Dias V, Hui C, Van Sluys MA, D′Hont A (2003) Genome distribution and characterization of EST derived sugarcane resistance gene analogs. Mol. Gen. Genome 269:406–419

    Article  CAS  Google Scholar 

  • Sreenivasan TV, Ahloowalia BS, Heinz DJ (1987) Cytogenetics. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, New York, pp 211–253

    Google Scholar 

  • Vettore AL, da Silva FR, Kemper EL, Souza GM, da Silva AM, Ferro MI, Henrique-Silva F et al (2003) Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane. Genome Res 13:2725–2735

    Article  PubMed  Google Scholar 

  • Wu KK, Burnquist W, Sorrells ME, Tew TL, Moore PH, Tanksley SD (1992) The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet 83:294–300

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for funding contributions from the following organizations: Australian Sugar Research and Development Corporation; Australian Academy of Science; French Embassy in Canberra; Cooperative Research Centre for Sugar Industry Innovation through Biotechnology; BSES Limited, and CIRAD. We thank J.C. Glaszmann and N. Berding for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Piperidis.

Additional information

Communicated by C. Gebhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piperidis, G., Piperidis, N. & D’Hont, A. Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane. Mol Genet Genomics 284, 65–73 (2010). https://doi.org/10.1007/s00438-010-0546-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-010-0546-3

Key words

Navigation