Skip to main content
Log in

Detection of low-abundant novel transcripts in mouse hematopoietic stem cells

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Gene expression profiles of hematopoietic stem cells (HSCs) provide clues for understanding molecular mechanisms of HSC behavior, including self-renewal and differentiation. We took advantage of serial analysis of gene expression (SAGE) to identify medium- and low-abundant transcripts expressed in HSCs/hematopoietic progenitor cells (HPCs). Among a total of 31,380 unique transcripts, 17,326 (55%) correspond to known genes and, 14,054 (45%) are low-copy transcripts that have no matches to currently known genes. Among the former class, 3,899 (23%) were alternatively spliced transcripts and 3,754 (22%) represent anti-sense transcripts from known genes. Mapping of the SAGE tags to the mouse genome showed that differences in gene expression exist among chromosomes. In addition, comparison of the HSCs/HPCs SAGE data to that of myeloid progenitor cells revealed that massive genetic reprogramming occurs in hematopoietic cell differentiation. Our results demonstrate a previously unrecognized complexity of gene expression in HSCs/HPCs, and indicate the need for further efforts to fully identify and characterize the transcripts expressed in this cell type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agoulnik IU, Vaid A, Nakka M, Alvarado M, Bingman WE 3rd, Erdem H, Frolov A, Smith CL, Ayala GE, Ittmann MM, Weigel NL (2006) Androgens modulate expression of transcription intermediary factor 2, an androgen receptor coactivator whose expression level correlates with early biochemical recurrence in prostate cancer. Cancer Res 66:10594–10602

    Article  PubMed  CAS  Google Scholar 

  • Akala OO, Clarke MF (2006) Hematopoietic stem cell self-renewal. Curr Opin Genet Dev 16:496–501

    Article  PubMed  CAS  Google Scholar 

  • Chen JJ, Rowley JD, Wang SM (2000) Generation of longer cDNA fragments from serial analysis of gene expression tags for gene identification. Proc Natl Acad Sci USA 97:349–353

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Rowley DA, Clark T, Lee S, Zhou G, Beck C, Rowley JD, Wang SM (2001) The pattern of gene expression in mouse Gr-1(+) myeloid progenitor cells. Genomics 77:149–162

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Sun M, Lee S, Zhou G, Rowley JD, Wang SM (2002) Identifying novel transcripts and novel genes in the human genome by using novel SAGE tags. Proc Natl Acad Sci USA 99:12257–12262

    Article  PubMed  CAS  Google Scholar 

  • Cheung AM, Kwong YL, Liang R, Leung AY (2006) Stem cell model of hematopoiesis. Curr Stem Cell Res Ther 1:305–315

    PubMed  CAS  Google Scholar 

  • Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4:P3

    Article  PubMed  Google Scholar 

  • Forsberg EC, Prohaska SS, Katzman S, Heffner GC, Stuart JM, Weissman IL (2005) Differential expression of novel potential regulators in hematopoietic stem cells. PLoS Genet 1:e28

    Article  PubMed  Google Scholar 

  • Huttmann A, Duhrsen U, Heydarian K, Klein-Hitpass L, Boes T, Boyd AW, Li CL (2006) Gene expression profiles in murine hematopoietic stem cells revisited: analysis of cDNA libraries reveals high levels of translational and metabolic activities. Stem Cells 24:1719–1727

    Article  PubMed  Google Scholar 

  • Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR (2002) A stem cell molecular signature. Science 298:601–604

    Article  PubMed  CAS  Google Scholar 

  • Lash AE, Tolstoshev CM, Wagner L, Schuler GD, Strausberg RL, Riggins GJ, Altschul SF (2000) SAGEmap: a public gene expression resource. Genome Res 10:1051–1060

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Bao J, Zhou G, Shapiro J, Xu J, Shi RZ, Lu X, Clark T, Johnson D, Kim YC, Wing C, Tseng C, Sun M, Lin W, Wang J, Yang H, Du W, Wu CI, Zhang X, Wang SM (2005) Detecting novel low-abundant transcripts in Drosophila. RNA 11:939–946

    Article  PubMed  CAS  Google Scholar 

  • Lemischka IR, Pritsker M (2006) Alternative splicing increases complexity of stem cell transcriptome. Cell Cycle 5:347–351

    PubMed  CAS  Google Scholar 

  • Megy K, Audic S, Claverie JM (2002) Heart-specific genes revealed by expressed sequence tag (EST) sampling. Genome Biol 3:RESEARCH0074

    PubMed  Google Scholar 

  • Oritani K, Aoyama K, Tomiyama Y, Kincade PW, Matsuzawa Y (2000) Stromal cell CD9 and the differentiation of hematopoietic stem/progenitor cells. Leuk Lymphoma 38:147–152

    PubMed  CAS  Google Scholar 

  • Park IK, He Y, Lin F, Laerum OD, Tian Q, Bumgarner R, Klug CA, Li K, Kuhr C, Doyle MJ, Xie T, Schummer M, Sun Y, Goldsmith A, Clarke MF, Weissman IL, Hood L, Li L (2002) Differential gene expression profiling of adult murine hematopoietic stem cells. Blood 99:488–498

    Article  PubMed  CAS  Google Scholar 

  • Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA (2002) “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298:597–600

    Article  PubMed  CAS  Google Scholar 

  • Romualdi C, Bortoluzzi S, D’Alessi F, Danieli GA (2003) IDEG6: a web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiol Genomics 12:159–162

    PubMed  CAS  Google Scholar 

  • Scheetz TE, Raymond MR, Nishimura DY, McClain A, Roberts C, Birkett C, Gardiner J, Zhang J, Butters N, Sun C, Kwitek-Black A, Jacob H, Casavant TL, Soares MB, Sheffield VC (2001) Generation of a high-density rat EST map. Genome Res 11:497–502

    Article  PubMed  CAS  Google Scholar 

  • Shojaei F, Trowbridge J, Gallacher L, Yuefei L, Goodale D, Karanu F, Levac K, Bhatia M (2005) Hierarchical and ontogenic positions serve to define the molecular basis of human hematopoietic stem cell behavior. Dev Cell 8:651–663

    Article  PubMed  CAS  Google Scholar 

  • Su ZZ, Shi Y, Fisher PB (1997) Subtraction hybridization identifies a transformation progression-associated gene PEG-3 with sequence homology to a growth arrest and DNA damage-inducible gene. Proc Natl Acad Sci USA 94:9125–9130

    Article  PubMed  CAS  Google Scholar 

  • Wang SM (2007) Understanding SAGE data. Trends Genet 23:42–50

    Article  PubMed  Google Scholar 

  • Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6:93–106

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Liu XS, Liu QR, Wei L (2006) Genome-wide in silico identification and analysis of cis natural antisense transcripts (cis-NATs) in ten species. Nucleic Acids Res 34:3465–3475

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the SRC Program of the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea Government (2009-0063409) and WCU (World Class University) Program through the Korea Science and Engineering Foundation funded by the Ministry of Education, Science and Technology (R33-2008-000-10070-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanggyu Lee.

Additional information

Communicated by P. Ruiz.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HS., Hwang, J., Kim, YH. et al. Detection of low-abundant novel transcripts in mouse hematopoietic stem cells. Mol Genet Genomics 282, 363–370 (2009). https://doi.org/10.1007/s00438-009-0469-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-009-0469-z

Keywords

Navigation