Skip to main content

Advertisement

Log in

A targeted approach to the identification of candidate genes determining susceptibility to Plasmodium gallinaceum in Aedes aegypti

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The malaria parasite, Plasmodium , has evolved an intricate life cycle that includes stages specific to a mosquito vector and to the vertebrate host. The mosquito midgut represents the first barrier Plasmodium parasites encounter following their ingestion with a blood meal from an infected vertebrate. Elucidation of the molecular interaction between the parasite and the mosquito could help identify novel approaches to preventing parasite development and subsequent transmission to vertebrates. We have used an integrated Bulked Segregant Analysis-Differential Display (BSA-DD) approach to target genes expressed that are in the midgut and located within two genome regions involved in determining susceptibility to P. gallinaceum in the mosquito Aedes aegypti. A total of twenty-two genes were identified and characterized, including five genes with no homologues in public sequence databases. Eight of these genes were mapped genetically to intervals on chromosome 2 that contain two quantitative trait loci (QTLs) that determine susceptibility to infection by P. gallinaceum. Expression analysis revealed several expression patterns, and ten genes were specifically or preferentially expressed in the midgut of adult females. Real-time PCR quantification of expression with respect to the time of blood meal ingestion and infection status in mosquito strains permissive and refractory for malaria revealed a differential expression pattern for seven genes. These represent candidate genes that may influence the ability of the mosquito vector to support the development of Plasmodium parasites. Here we describe their isolation and discuss their putative roles in parasite-mosquito interactions and their use as potential targets in strategies designed to block transmission of malaria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4A–C.
Fig. 5A–E.

Similar content being viewed by others

References

  • Akey JM, Sosnoski D, Parra E, Dios S, Hiester K, Su B, Bonilla C, Jin L, Shriver MD (2001) Melting curve analysis of SNPs (McSNP): a gel-free and inexpensive approach for SNP genotyping. Biotechniques 30:358–367

    CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  Google Scholar 

  • Arca B, Lombardo F, de Lara Capurro M, della Torre A, Dimopoulos G, James AA, Coluzzi M (1999) Trapping cDNAs encoding secreted proteins from the salivary glands of the malaria vector Anopheles gambiae. Proc Natl Acad Sci USA 96:1516–1521

    Article  CAS  PubMed  Google Scholar 

  • Bertioli DJ, Schlichter UHA, Adams MJ, Burrows PK, Steinbiss HH, Antoniw JF (1995) An analysis of differential display shows a strong bias towards high copy number messenger RNAs. Nucleic Acids Res 23:4520–4523

    CAS  PubMed  Google Scholar 

  • Catteruccia F, Nolan T, Blass C, Muller HM, Crisanti A, Kafatos FC, Loukeris TG (2000) Toward Anopheles transformation: Minos element activity in anopheline cells and embryos. Proc Natl Acad Sci USA 97:2157–2162

    Article  CAS  PubMed  Google Scholar 

  • Coates CJ (2000) Malaria. A mosquito transformed. Nature 405:900–901

    Article  CAS  PubMed  Google Scholar 

  • Crabb JW, Carlson A, Chen Y, Goldflam S, Intres R, West KA, Hulmes JD, Kapron JT, Luck LA, Horwitz J, Bok D (1998) Structural and functional characterization of recombinant human cellular retinaldehyde-binding protein. Protein Sci 7:746–757

    CAS  PubMed  Google Scholar 

  • Delmas B, Gelfi J, L'Haridon R, Vogel LK, Sjostrom H, Noren O, Laude H (1992) Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature 357:417–420

    Article  CAS  PubMed  Google Scholar 

  • Dessens JT, Beetsma AL, Dimopoulos G, Wengelnik K, Crisanti A, Kafatos FC, Sinden RE (1999) CTRP is essential for mosquito infection by malaria ookinetes. EMBO J 18:6221–6227

    Article  CAS  PubMed  Google Scholar 

  • Dimopoulos G, Richman A, della Torre A, Kafatos FC, Louis C (1996) Identification and characterization of differentially expressed cDNAs of the vector mosquito, Anopheles gambiae. Proc Natl Acad Sci USA 93:13066–13071

    CAS  PubMed  Google Scholar 

  • Dimopoulos G, Seeley D, Wolf A, Kafatos FC (1998) Malaria infection of the mosquito Anopheles gambiae activates immune- responsive genes during critical transition stages of the parasite life cycle. EMBO J 17:6115–6123

    Article  CAS  PubMed  Google Scholar 

  • Dimopoulos G, Muller HM, Levashina EA, Kafatos FC (2001) Innate immune defense against malaria infection in the mosquito. Curr Opin Immunol 13:79–88

    CAS  PubMed  Google Scholar 

  • Dunkov BC, Zhang D, Choumarov K, Winzerling JJ, Law JH (1995) Isolation and characterization of mosquito ferritin and cloning of a cDNA that encodes one subunit. Arch Insect Biochem Physiol 29:293–307

    CAS  PubMed  Google Scholar 

  • Feldmann AM, Billingsley PF, Savelkoul E (1990) Bloodmeal digestion by strains of Anopheles stephensi Liston (Diptera: Culicidae) of differing susceptibility to Plasmodium falciparum. Parasitology 101:193–200

    PubMed  Google Scholar 

  • Feyereisen R (1999) Insect P450 enzymes. Annu Rev Entomol 44:507–533

    PubMed  Google Scholar 

  • Ghosh A, Edwards MJ, Jacobs-Lorena M (2000) The journey of the malaria parasite in the mosquito: hopes for the new century. Parasitol Today 16:196–201

    Article  CAS  PubMed  Google Scholar 

  • Giugni TD, Soderberg C, Ham DJ, Bautista RM, Hedlund KO, Moller E, Zaia JA (1996) Neutralization of human cytomegalovirus by human CD13-specific antibodies. J Infect Dis 173:1062–1071

    CAS  PubMed  Google Scholar 

  • Hoffmann JA (1995) Innate immunity of insects. Curr Opin Immunol 7:4–10

    Article  CAS  PubMed  Google Scholar 

  • Huber M, Cabib E, Miller LH (1991) Malaria parasite chitinase and penetration of the mosquito peritrophic membrane. Proc Natl Acad Sci USA 88:2807–2810

    CAS  PubMed  Google Scholar 

  • Hultmark D (1993) Immune reactions in Drosophila and other insects: a model for innate immunity. Trends Genet 9:178–83.

    CAS  PubMed  Google Scholar 

  • Jasinskiene N, Coates CJ, Benedict MQ, Cornel AJ, Rafferty CS, James AA, Collins FH (1998) Stable transformation of the yellow fever mosquito, Aedes aegypti , with the Hermes element from the housefly. Proc Natl Acad Sci USA 95:3743–3747

    CAS  PubMed  Google Scholar 

  • Jiang Q, Hall M, Noriega FG, Wells M (1997) cDNA cloning and pattern of expression of an adult, female-specific chymotrypsin from Aedes aegypti midgut. Insect Biochem Mol Biol 27:283–289

    Article  CAS  PubMed  Google Scholar 

  • Kokoza V, Ahmed A, Cho WL, Jasinskiene N, James AA, Raikhel A (2000) Engineering blood meal-activated systemic immunity in the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci USA 97:9144–9149

    Article  CAS  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    CAS  PubMed  Google Scholar 

  • Ledakis P, Tanimura H, Fojo T (1998) Limitations of differential display. Biochim Biophys Res Comm 251:653–656

    Article  CAS  Google Scholar 

  • Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971

    CAS  PubMed  Google Scholar 

  • Lincoln SE, Lander ES (1990) Mapping genes controlling quantitative traits using MAPMAKER/QTL. Whitehead Institute for Biomedical Research, Cambridge, Mass.

  • Luckhart S, Vodovotz Y, Cui L, Rosenberg R (1998) The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proc Natl Acad Sci USA 95:5700–5705

    Article  CAS  PubMed  Google Scholar 

  • Moreira LA, Edwards MJ, Adhami F, Jasinskiene N, James AA, Jacobs-Lorena M (2000) Robust gut-specific gene expression in transgenic Aedes aegypti mosquitoes. Proc Natl Acad Sci USA 97:10895–10898

    Article  CAS  PubMed  Google Scholar 

  • Morlais I, Severson DW (2001) Identification of a polymorphic mucin-like gene expressed in the midgut of the mosquito, Aedes aegypti , using an integrated bulked segregant and differential display analysis. Genetics 158:1125–1136

    CAS  PubMed  Google Scholar 

  • Muller HM, Catteruccia F, Vizioli J, della Torre A, Crisanti A (1995) Constitutive and blood meal-induced trypsin genes in Anopheles gambiae. Exp Parasitol 81:371–385

    PubMed  Google Scholar 

  • Nakanishi K, Yaoi K, Nagino Y, Hara H, Kitami M, Atsumi S, Miura N, Sato R (2002) Aminopeptidase N isoforms from the midgut of Bombyx mori and Plutella xylostella —their classification and the factors that detrmine their binding specificity to Bacillus thuringiensis CryIA toxin. FEBS Lett 519:215–220

    Article  CAS  PubMed  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    CAS  Google Scholar 

  • Oduol F, Xu J, Niare O, Natarajan R, Vernick KD (2000) Genes identified by an expression screen of the vector mosquito Anopheles gambiae display differential molecular immune response to malaria parasites and bacteria. Proc Natl Acad Sci USA 97:11397–11402

    Article  CAS  PubMed  Google Scholar 

  • Oppermann UC, Filling C, Jornvall H (2001) Forms and functions of human SDR enzymes. Chem Biol Interact 130–132:699–705

    Google Scholar 

  • Pautot V, Holzer FM, Reisch B, Walling LL (1993) Leucine aminopeptidase—an inducible component of the defense response in Lycopersicon esculentum (tomato). Proc Natl Acad Sci USA 90:9906–9910

    CAS  PubMed  Google Scholar 

  • Pomes A, Melen E, Vailes LD, Retief JD, Arruda LK, Chapman MD (1998) Novel allergen structures with tandem amino acid repeats derived from German and American cockroach. J Biol Chem 273:30801–30807

    Article  CAS  PubMed  Google Scholar 

  • Richards AG, Richards PA (1977) The peritrophic membranes of insects. Annu Rev Entomol 22:219–240

    Article  PubMed  Google Scholar 

  • Richman AM, Dimopoulos G, Seeley D, Kafatos FC (1997) Plasmodium activates the innate immune response of Anopheles gambiae mosquitoes. EMBO J 16:6114–6119

    Article  CAS  PubMed  Google Scholar 

  • Rose RL, Goh D, Thompson DM, Verma KD, Heckel DG, Gahan LJ, Roe RM, Hodgson E (1997) Cytochrome P450 (CYP)9A1 in Heliothis virescens: the first member of a new CYP family. Insect Biochem Mol Biol 27:605–615

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld A, Vanderberg JP (1999) Plasmodium berghei: induction of aminopeptidase in malaria-resistant strain of Anopheles gambiae. Exp Parasitol 93:101–104

    Article  CAS  PubMed  Google Scholar 

  • Schmid KJ, Tautz D (1997) A screen for fast evolving genes from Drosophila. Proc Natl Acad Sci USA 94:9746–9750

    Article  CAS  PubMed  Google Scholar 

  • Scott JG, Liu N, Wen Z (1998) Insect cytochromes P450: diversity, insecticide resistance and tolerance to plant toxins. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 121:147–155

    Article  CAS  PubMed  Google Scholar 

  • Severson DW (1997) RFLP analysis of insect genomes. In: Crampton JM, Beard CB, Louis C (eds) The Molecular biology of insect disease vectors. Chapman and Hall, London, pp 309–320

  • Severson DW, Thathy V, Mori A, Zhang Y, Christensen BM (1995) Restriction fragment length polymorphism mapping of quantitative trait loci for malaria parasite susceptibility in the mosquito Aedes aegypti. Genetics 139:1711–1717

    CAS  PubMed  Google Scholar 

  • Severson DW, Meece JK, Lovin DD, Saha G, Morlais I (2002) Linkage map organization of expressed sequence tags and sequence tagged sites in the mosquito, Aedes aegypti. Insect Mol Biol 11:371–378

    Article  CAS  PubMed  Google Scholar 

  • Shahabuddin M, Criscio M, Kaslow DC (1995) Unique specificity of in vitro inhibition of mosquito midgut trypsin-like activity correlates with in vivo inhibition of malaria parasite infectivity. Exp Parasitol 80:212–219

    Article  CAS  PubMed  Google Scholar 

  • Shao Z, Cui Y, Liu X, Yi H, Ji J, Yu Z (1998) Processing of delta-endotoxin of Bacillus thuringiensis subsp. kurstaki HD-1 in Heliothis armigera midgut juice and the effects of protease inhibitors. J Invertebr Pathol 72:73–81

    Article  CAS  PubMed  Google Scholar 

  • Shen Z, Dimopoulos G, Kafatos FC, Jacobs-Lorena M (1999) A cell surface mucin specifically expressed in the midgut of the malaria mosquito Anopheles gambiae. Proc Natl Acad Sci USA 96:5610–5615

    Article  CAS  PubMed  Google Scholar 

  • Shen Z, Edwards MJ, Jacobs-Lorena M (2000) A gut-specific serine protease from the malaria vector Anopheles gambiae is downregulated after blood ingestion. Insect Mol Biol 9:223–229

    Article  CAS  PubMed  Google Scholar 

  • Sieber KP, Huber M, Kaslow D, Banks SM, Torii M, Aikawa M, Miller LH (1991) The peritrophic membrane as a barrier: its penetration by Plasmodium gallinaceum and the effect of a monoclonal antibody to ookinetes. Exp Parasitol 72:145–156

    CAS  PubMed  Google Scholar 

  • Stevens JL, Snyder MJ, Koener JF, Feyereisen R (2000) Inducible P450s of the CYP9 family from larval Manduca sexta midgut. Insect Biochem Mol Biol 30:559–568

    Article  CAS  PubMed  Google Scholar 

  • Tautz D, Schmid KJ (1998) From genes to individuals: developmental genes and the generation of the phenotype. Philos Trans R Soc Lond B Biol Sci 353:231–240

    Article  CAS  PubMed  Google Scholar 

  • Tellam RL, Wijffels G, Willadsen P (1999) Peritrophic matrix proteins. Insect Biochem Mol Biol 29:87–101

    Article  CAS  PubMed  Google Scholar 

  • Thathy V, Severson DW, Christensen BM (1994) Reinterpretation of the genetics of susceptibility of Aedes aegypti to Plasmodium gallinaceum. J Parasitol 80:705–712

    CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  Google Scholar 

  • Vinetz JM, Valenzuela JG, Specht CA, Aravind L, Langer RC, Ribeiro JM, Kaslow DC (2000) Chitinases of the avian malaria parasite Plasmodium gallinaceum, a class of enzymes necessary for parasite invasion of the mosquito midgut. J Biol Chem 275:10331–10341

    Article  CAS  PubMed  Google Scholar 

  • Wu CH, Wang NM, Lee MF, Kao CY, Luo SF (1998) Cloning of the American cockroach Cr-PII allergens: evidence for the existence of cross-reactive allergens between species. J Allergy Clin Immunol 101:832–840

    CAS  PubMed  Google Scholar 

  • Zieler H, Nawrocki JP, Shahabuddin M (1999) Plasmodium gallinaceum ookinetes adhere specifically to the midgut epithelium of Aedes aegypti by interaction with a carbohydrate ligand. J Exp Biol 202:485–495

    CAS  PubMed  Google Scholar 

  • Zimmer S, Stocker A, Sarbolouki MN, Spycher SE, Sassoon J, Azzi A (2000) A novel human tocopherol-associated protein: cloning, in vitro expression, and characterization. J Biol Chem 275:25672–25680

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant No. AI33127 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. W. Severson.

Additional information

Communicated by D. Y. Thomas

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morlais, I., Mori, A., Schneider, J.R. et al. A targeted approach to the identification of candidate genes determining susceptibility to Plasmodium gallinaceum in Aedes aegypti . Mol Gen Genomics 269, 753–764 (2003). https://doi.org/10.1007/s00438-003-0882-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-003-0882-7

Keywords

Navigation