Skip to main content

Advertisement

Log in

Immunological characteristics of CD103+CD8+ Tc cells in the liver of C57BL/6 mouse infected with plasmodium NSM

  • Research
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

CD103 is an important marker of tissue-resident memory T cells (TRM) which play important roles in fighting against infection. However, the immunological characteristics of CD103+ T cells are not thoroughly elucidated in the liver of mouse infected with Plasmodium. Six- to eight-week-old C57BL/6 mice were infected with Plasmodium yoelii nigeriensis NSM. Mice were sacrificed on 12–16 days after infection and the livers were picked out. Sections of the livers were stained, and serum aspartate aminotransferase (AST) and alanine transaminase (ALT) levels were measured. Moreover, lymphocytes in the liver were isolated, and the expression of CD103 was determined by using qPCR. The percentage of CD103 on different immune cell populations was dynamically observed by using flow cytometry (FCM). In addition, the phenotype and cytokine production characteristics of CD103+CD8+ Tc cell were analyzed by using flow cytometry, respectively. Erythrocyte stage plasmodium infection could result in severe hepatic damage, a widespread inflammatory response and the decrease of CD103 expression on hepatic immune cells. Only CD8+ Tc and γδT cells expressed higher levels of CD103 in the uninfected state.CD103 expression in CD8+ Tc cells significantly decreased after infection. Compared to that of CD103 CD8+ Tc cells, CD103+ CD8+ Tc cells from the infected mice expressed lower level of CD69, higher level of CD62L, and secreted more IL-4, IL-10, IL-17, and secreted less IFN-γ. CD103+CD8+ Tc cells might mediate the hepatic immune response by secreting IL-4, IL-10, and IL-17 except IFN-γ in the mice infected with the erythrocytic phase plasmodium, which could be involved in the pathogenesis of severe liver damage resulted from the erythrocytic phase plasmodium yoelii nigeriensis NSM infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

You can email the corresponding author for more details on the method and data of this paper. The datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.

Abbreviations

TRM:

Tissue-resident memory T cells

AST:

Aspartate aminotransferase

ALT:

Alanine transaminase

qPCR:

Quantitative PCR

P. falciparum :

Plasmodium falciparum

P. vivax :

Plasmodium vivax

S. japonicum :

Schistosoma japonicum

S. japonicum :

Schistosoma japonicum

PBS:

Phosphate Buffered Saline

PMA:

Phorbol 12-myristate 13-acetate

FCM:

Flow cystometry

References

  • Amsen D, van Gisbergen KPJM, Hombrink P, van Lier RAW (2018) Tissue-resident memory T cells at the center of immunity to solid tumors. Nat Immunol 19(6):538–546

    Article  CAS  PubMed  Google Scholar 

  • Ariotti S, Hogenbirk MA, Dijkgraaf FE, Visser LL, Hoekstra ME, Song JY et al (2014) T cell memory. Skin-resident memory CD8+ T cells trigger a state of tissue-wide pathogen alert. Science 346(6205):101–5

    Article  CAS  PubMed  Google Scholar 

  • Bernink JH, Krabbendam L, Germar K, de Jong E, Gronke K, Kofoed-Nielsen M et al (2015) Interleukin-12 and -23 control plasticity of CD127(+) group 1 and group 3 innate lymphoid cells in the intestinal lamina propria. Immunity 43(1):146–160

    Article  CAS  PubMed  Google Scholar 

  • Burke JD, Young HA (2019) IFN-γ: A cytokine at the right time, is in the right place. Semin Immunol 43:101280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cepek KL, Shaw SK, Parker CM, Russell GJ, Morrow JS, Rimm DL et al (1994) Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the alpha E beta 7 integrin. Nature 372(6502):190–193

    Article  CAS  PubMed  Google Scholar 

  • Chamoto K, Al-Habsi M, Honjo T (2017) Role of PD-1 in immunity and diseases. Curr Top Microbiol Immunol 410:75–97

    CAS  PubMed  Google Scholar 

  • Cibrián D, Sánchez-Madrid F (2017) CD69: from activation marker to metabolic gatekeeper. Eur J Immunol 47(6):946–953

    Article  PubMed  PubMed Central  Google Scholar 

  • Cockburn IA, Seder RA (2018) Malaria prevention: from immunological concepts to effective vaccines and protective antibodies. Nat Immunol 19(11):1199–1211

    Article  CAS  PubMed  Google Scholar 

  • Cowman AF, Healer J, Marapana D, Marsh K (2016) Malaria: biology and disease. Cell 167(3):610–624

    Article  CAS  PubMed  Google Scholar 

  • del Rio ML, Bernhardt G, Rodriguez-Barbosa JI, Förster R (2010) Development and functional specialization of CD103+ dendritic cells. Immunol Rev 234(1):268–281

    Article  PubMed  Google Scholar 

  • Deroost K, Langhorne J (2018) Gamma/delta T cells and their role in protection against malaria. Front Immunol 9:2973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobbs KR, Crabtree JN, Dent AE (2020) Innate immunity to malaria-The role of monocytes. Immunol Rev 293(1):8–24

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Ruiz D, Ng WY, Holz LE, Ma JZ, Zaid A, Wong YC et al (2016) Liver-resident memory CD8+ T cells form a front-line defense against malaria liver-stage infection. Immunity 45(4):889–902

    Article  CAS  PubMed  Google Scholar 

  • Freitas do Rosario AP, Langhorne J (2012) T cell-derived IL-10 and its impact on the regulation of host responses during malaria. Int J Parasitol. 42(6):549–55

    Article  CAS  PubMed  Google Scholar 

  • Gao B, Jeong WI, Tian Z (2007) Liver: An organ with predominant innate immunity. Hepatology 47(2):729–736

    Article  Google Scholar 

  • Gebhardt T, Wakim LM, Eidsmo L, Reading PC, Heath WR, Carbone FR (2009) Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat Immunol 10(5):524–530

    Article  CAS  PubMed  Google Scholar 

  • Gilson PR, Nebl T, Vukcevic D, Moritz RL, Sargeant T, Speed TP et al (2006) Identification and stoichiometry of glycosylphosphatidylinositol-anchored membrane proteins of the human malaria parasite Plasmodium falciparum. Mol Cell Proteomics 5(7):1286–1299

    Article  CAS  PubMed  Google Scholar 

  • Gogoi D, Biswas D, Borkakoty B, Mahanta J (2018) Exposure to Plasmodium vivax is associated with the increased expression of exhaustion markers on γδ T lymphocytes. Parasite Immunol 40(12):e12594

    Article  PubMed  Google Scholar 

  • Gola A, Silman D, Walters AA, Sridhar S, Uderhardt S, Salman AM et al (2018) Prime and target immunization protects against liver-stage malaria in mice. Sci Transl Med. 10(460):eaap9128

    Article  PubMed  Google Scholar 

  • Hardenberg JHB, Braun A, Schön MP (2018) A Yin and Yang in Epithelial immunology: the roles of the αE(CD103)β7 integrin in T cells. J Invest Dermatol 138(1):23–31

    Article  CAS  PubMed  Google Scholar 

  • Higgins JMG, Mandlebrot DA, Shaw SK, Russell GJ, Murphy EA, Chen YT et al (1998) Direct and regulated interaction of integrin aEb 7 with E-cadherin. J Cell Biol 140:14

    Article  Google Scholar 

  • Hill AVS (2006) Pre-erythrocytic malaria vaccines: towards greater efficacy. Nat Rev Immunol 6(1):21–32

    Article  CAS  PubMed  Google Scholar 

  • Ho IC, Miaw SC (2016) Regulation of IL-4 expression in immunity and diseases. Adv Exp Med Biol 941:31–77

    Article  CAS  PubMed  Google Scholar 

  • Hojo-Souza NS, de Azevedo PO, de Castro JT, Teixeira-Carvalho A, Lieberman J, Junqueira C et al (2020) Contributions of IFN-γ and granulysin to the clearance of Plasmodium yoelii blood stage. PLoS Pathog 16(9):e1008840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivetic A, Hoskins Green HL, Hart SJ (2019) L-selectin: a major regulator of leukocyte adhesion. Migration and Signaling Front Immunol 10:1068

    Article  CAS  PubMed  Google Scholar 

  • Jasiecka-Mikołajczyk A, Jaroszewski JJ, Maślanka T (2021) Oclacitinib, a Janus kinase inhibitor, reduces the frequency of IL-4- and IL-10-, but Not IFN-γ-, producing murine CD4+ and CD8+ T cells and counteracts the induction of type 1 regulatory T cells. Molecules 26(18):5655

    Article  PubMed  PubMed Central  Google Scholar 

  • Jenne CN, Kubes P (2013) Immune surveillance by the liver. Nat Immunol 14(10):996–1006

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Clark RA, Liu L, Wagers AJ, Fuhlbrigge RC, Kupper TS (2012) Skin infection generates non-migratory memory CD8+ T(RM) cells providing global skin immunity. Nature 483(7388):227–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junqueira C, Barbosa CRR, Costa PAC, Teixeira-Carvalho A, Castro G, Sen Santara S et al (2018) Cytotoxic CD8+ T cells recognize and kill Plasmodium vivax–infected reticulocytes. Nat Med 24(9):1330–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kak G, Raza M, Tiwari BK (2018) Interferon-gamma (IFN-γ): exploring its implications in infectious diseases. Biomol Concepts 9(1):64–79

    Article  CAS  PubMed  Google Scholar 

  • Kendjo E, Agbenyega T, Bojang K, Newton CRJC, Bouyou-Akotet M, Pedross F et al (2013) Mortality patterns and site heterogeneity of severe malaria in African children. PLoS ONE 8(3):e58686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Floc’h A, Jalil A, Vergnon I, Le Maux Chansac B, Lazar V, Bismuth G et al (2007) Alpha E beta 7 integrin interaction with E-cadherin promotes antitumor CTL activity by triggering lytic granule polarization and exocytosis. J Exp Med. 204(3):559–70

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Floc’h A, Jalil A, Franciszkiewicz K, Validire P, Vergnon I, Mami-Chouaib F (2011) Minimal engagement of CD103 on cytotoxic T lymphocytes with an E-cadherin-Fc molecule triggers lytic granule polarization via a phospholipase Cgamma-dependent pathway. Cancer Res. 71(2):328–38

    Article  PubMed  Google Scholar 

  • Li J, Cai B, Qi Y, Zhao W, Liu J, Xu R et al (2016) UTR introns, antisense RNA and differentially spliced transcripts between Plasmodium yoelii subspecies. Malar J 15:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim C, Dankwa S, Paul AS, Duraisingh MT (2017) Host cell tropism and adaptation of blood-stage malaria parasites: challenges for malaria elimination. Cold Spring Harb Perspect Med 7(11):a025494

    Article  PubMed  PubMed Central  Google Scholar 

  • Mackay LK, Stock AT, Ma JZ, Jones CM, Kent SJ, Mueller SN et al (2012) Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc Natl Acad Sci 109(18):7037–7042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackay LK, Rahimpour A, Ma JZ, Collins N, Stock AT, Hafon ML et al (2013) The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin. Nat Immunol 14(12):1294–1301

    Article  CAS  PubMed  Google Scholar 

  • Marquardt N, Ivarsson MA, Sundström E, Åkesson E, Martini E, Eidsmo L et al (2016) Fetal CD103+ IL-17-Producing group 3 innate lymphoid cells represent the dominant lymphocyte subset in human amniotic fluid. J Immunol 197(8):3069–3075

    Article  CAS  PubMed  Google Scholar 

  • Masopust D, Vezys V, Marzo AL, Lefrançois L (2001) Pillars article: preferential localization of effector memory cells in nonlymphoid tissue. Science. 291:2413–2417

    Article  CAS  PubMed  Google Scholar 

  • Masopust D, Vezys V, Wherry EJ, Barber DL, Ahmed R (2006) Cutting edge: gut microenvironment promotes differentiation of a unique memory CD8 T cell population. J Immunol 176(4):2079–2083

    Article  CAS  PubMed  Google Scholar 

  • McCall MBB, Sauerwein RW (2010) Interferon-γ–central mediator of protective immune responses against the pre-erythrocytic and blood stage of malaria. J Leukoc Biol 88(6):1131–1143

    Article  CAS  PubMed  Google Scholar 

  • Morrot A, Zavala F (2004) Effector and memory CD8+ T cells as seen in immunity to malaria. Immunol Rev 201(1):291–303

    Article  CAS  PubMed  Google Scholar 

  • Moxon CA, Gibbins MP, McGuinness D, Milner DA, Marti M (2020) New Insights into Malaria Pathogenesis. Annu Rev Pathol Mech Dis 15(1):315–343

    Article  CAS  Google Scholar 

  • Mueller SN, Mackay LK (2016) Tissue-resident memory T cells: local specialists in immune defence. Nat Rev Immunol 16(2):79–89

    Article  CAS  PubMed  Google Scholar 

  • Racanelli V, Rehermann B (2006) The liver as an immunological organ. Hepatology 43(S1):S54-62

    Article  CAS  PubMed  Google Scholar 

  • Roediger B, Kyle R, Yip KH, Sumaria N, Guy TV, Kim BS et al (2013) Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nat Immunol 14(6):564–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saavedra-Langer R, Marapara J, Valle-Campos A, Durand S, Vásquez-Chasnamote ME, Silva H et al (2018) IgG subclass responses to excreted-secreted antigens of Plasmodium falciparum in a low-transmission malaria area of the Peruvian Amazon. Malar J 17(1):328

    Article  PubMed  PubMed Central  Google Scholar 

  • Schenkel JM, Masopust D (2014) Tissue-Resident Memory T Cells. Immunity 41(6):886–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenkel JM, Fraser KA, Beura LK, Pauken KE, Vezys V, Masopust D (2014) T cell memory Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science. 346(6205):98–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui KRR, Powrie F (2008) CD103+ GALT DCs promote Foxp3+ regulatory T cells. Mucosal Immunol 1(Suppl 1):S34-38

    Article  CAS  PubMed  Google Scholar 

  • Silva JLA, Rezende-Oliveira K, da Silva MV, Gómez-Hernández C, Peghini BC, Silva NM et al (2014) IL-17-expressing CD4+ and CD8+ T lymphocytes in human toxoplasmosis. Mediators Inflamm 2014:573825

    PubMed  PubMed Central  Google Scholar 

  • Teijaro JR, Turner D, Pham Q, Wherry EJ, Lefrançois L, Farber DL (2011) Cutting edge: tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J Immunol 187(11):5510–5514

    Article  CAS  PubMed  Google Scholar 

  • Uss E, Rowshani AT, Hooibrink B, Lardy NM, van Lier RAW, ten Berge IJM (2006) CD103 is a marker for alloantigen-induced regulatory CD8+ T cells. J Immunol. 177(5):2775–83

    Article  CAS  PubMed  Google Scholar 

  • Valencia-Hernandez AM, Ng WY, Ghazanfari N, Ghilas S, de Menezes MN, Holz LE et al (2020) A Natural peptide antigen within the plasmodium ribosomal protein RPL6 confers liver TRM cell-mediated immunity against malaria in mice. Cell Host Microbe 27(6):950-962.e7

    Article  CAS  PubMed  Google Scholar 

  • Van Braeckel-Budimir N, Kurup SP, Harty JT (2016) Regulatory issues in immunity to liver and blood-stage malaria. Curr Opin Immunol 42:91–97

    Article  PubMed  Google Scholar 

  • Vinetz JM, Kumar S, Good MF, Fowlkes BJ, Berzofsky JA, Miller LH (1990) Adoptive transfer of CD8+ T cells from immune animals does not transfer immunity to blood stage Plasmodium yoelii malaria. J Immunol 144(3):1069–1074

    Article  CAS  PubMed  Google Scholar 

  • Wikenheiser DJ, Stumhofer JS (2016) ICOS Co-stimulation: friend or Foe? Front Immunol 7:304

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu B, Zhang G, Guo Z, Wang G, Xu X, Li JL et al (2021) The SKI proto-oncogene restrains the resident CD103+CD8+ T cell response in viral clearance. Cell Mol Immunol. 18(10):2410–21

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Huang S, Xiao S, He J, Lu F (2021) Impact of galectin-receptor interactions on liver pathology during the erythrocytic stage of Plasmodium berghei malaria. Front Immunol 12:758052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie H, Xie S, Wang M, Wei H, Huang H, Xie A et al (2022) Properties and roles of γδT cells in Plasmodium yoelii nigeriensis NSM infected C57BL/6 mice. Front Cell Infect Microbiol 11:788546

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Oguz C, Huse S, Xia L, Wu J, Peng YC et al (2021) Genome sequence, transcriptome, and annotation of rodent malaria parasite Plasmodium yoelii nigeriensis N67. BMC Genomics 22(1):303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Yang Q, Jin C, Feng Y, Xie S, Xie H et al (2019) Changes of CD103-expressing pulmonary CD4+ and CD8+ T cells in S. japonicum infected C57BL/6 mice. BMC Infect Dis. 19(1):999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong H, Liu Y, Xu Z, Liang P, Yang H, Zhang X et al (2018) TGF-β-induced CD8+CD103+ regulatory T cells show potent therapeutic effect on chronic graft-versus-host disease lupus by suppressing B cells. Front Immunol 9:35

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This project was funded by Key Discipline of Guangzhou Education Bureau (Basic Medicine) (201851839), the Natural Science Foundation of Guangdong Province (2020A1515010251, 2021A1515011032), Guangzhou Science and Technology Project (202002030082), and the Open Foundation Key Laboratory of Tropical Diseases Control (Sun Yatsen University), Ministry of Education (2021kfkt03), and Plan on enhancing scientific research in GMU (02–410-2302269XM), Guangdong Basic and Applied Basic Research Foundation (2021A1515220034), Guangdong Medical Scientific Research Foundation (B2023344).

Author information

Authors and Affiliations

Authors

Contributions

FS, SN, DC, and FM performed the in vitro cellular test. JL and CF performed histological experiment. HW conceived the study. JX and LL prepared parasite and animal. YG and ZT analyzed the results. XP, SZ, and JH contributed to the writing of the paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xingfei Pan, Shan Zhao or Jun Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This experimental study has been reviewed and approved by ethics committee of Tarbiat Modares University (IR.MODARES.REC.1398.220). All experiments were performed in accordance with relevant guidelines and regulations. All donors signed a written informed consent.

Consent for publication

Not applicable.

Competing interest

The authors declare no conflict of interest.

Additional information

Section Editor: Dana Mordue

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, F., Tang, S., Chen, D. et al. Immunological characteristics of CD103+CD8+ Tc cells in the liver of C57BL/6 mouse infected with plasmodium NSM. Parasitol Res 122, 2513–2524 (2023). https://doi.org/10.1007/s00436-023-07950-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-023-07950-z

Keywords

Navigation