Skip to main content
Log in

Genetic variation and population structure of Fasciola hepatica: an in silico analysis

  • Research
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Fasciola hepatica is a trematode leading to heavy economic setbacks to the livestock sector globally. The population’s genetic information and intimate kinship level are frequently assessed using analysis of mitochondrial DNA. In this analysis, we retrieved cox1 (n = 247) and nad1 (n = 357) sequences of F. hepatica from the NCBI GenBank database and aligned the sequences with the respective reference sequences using MEGA software. The median joining network was drawn using PopArt software while neutrality and diversity indices were estimated with the help of DnaSp software. Neighbor-joining phylogenetic tree was constructed using the MEGA software package. A total of 46 and 98 distinctive haplotypes were observed for cox1 and nad1 genes, respectively. Diversity indices indicated high haplotype and nucleotide diversities in both genes. Positive Tajima’s D and Fu’s Fs values were found for the entire population of both the genes under study. The cox1 and nad1 gene segments in this study showed high Tajima’s D values, suggesting a low likelihood of future population growth. The Tajima’s D value of the nad1 gene sequence is lower (2.14910) than that of the cox1 gene sequence (3.40314), which suggests that the former is growing at a slower rate. However, the region-wise analysis revealed that both the cox1 and nad1 genes showed deviation from neutrality suggesting a recent population expansion as a result of an excess of low-frequency polymorphism. Furthermore, the overall host-wise analysis showed positive and significant Tajima’s D values for the cox1 and nad1 gene sequences. To the best of our knowledge, this is the first attempt to provide insights into genetic variations and population structure of F. hepatica at a global scale using cox1 and nad1 genes. Our findings suggest the existence of specific variants of F. hepatica in different parts of the world and provide information on the molecular ecology of F. hepatica. The results of this study also mark a critical development in upcoming epidemiological investigations on F. hepatica and will also contribute to understanding the global molecular epidemiology and population structure of F. hepatica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agatsuma T, Arakawa Y, Iwagami M (2000) Molecular evidence of natural hybridization between Fasciola hepatica and F. gigantica. Parasitol Int 49:231–238

    Article  CAS  PubMed  Google Scholar 

  • Ai L, Chen MX, Alasaad S, Elsheikha HM, Li J, Li HL, Lin RQ, Zou FC, Zhu XQ, Chen JX (2011) Genetic characterization, species differentiation and detection of Fasciola spp. by molecular approaches. Parasit Vector 4:101

    Article  Google Scholar 

  • Akhlaghi E, Mohammadi MA, Ziaali N, Baneshi MR, Nasibi S, Kamyabi H, Rostami S, Harandi MF (2017) Morphometric and molecular study of Fasciola isolates from ruminants in Iran. Turkiye Parazitol Derg 41:192

    Article  PubMed  Google Scholar 

  • Alberfkani MI, Albarwary AJS, Jaafar GM, Zubair AI, Abdullah RY (2022) Molecular characterization and phylogenetic analysis of cox1 and ITS-1 gene fragments of Moniezia species isolated from sheep. Pak Vet J 42:566–570

    Article  CAS  Google Scholar 

  • Beesley NJ, Williams DJL, Paterson S, Hodgkinson JE (2017) Fasciola hepatica demonstrates high levels of genetic diversity, a lack of population structure and high gene flow, possible implications for drug resistance. Int J Parasitol 47:11–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beesley NJ, Caminade C, Charlier J, Flynn RJ, Hodgkinson JE, Martinez-Moreno A, Martinez-Valladares M, Perez J, Rinaldi L, Williams DJL (2018) Fasciola and fasciolosis in ruminants in Europe: identifying research needs. Transbound Emerg Dis 65:199–216

    Article  PubMed  Google Scholar 

  • Bowles J, McManus DP (1993) NADH dehydrogenase 1 gene sequences compared for species and strains of the genus Echinococcus. Int J Parasitol 23:969–972

    Article  CAS  PubMed  Google Scholar 

  • Bozorgomid A, Rouhani S, Harandi M, Ichikawa-Seki M, Raeghi S (2020) Genetic diversity and distribution of Fasciola hepatica haplotypes in Iran: molecular and phylogenetic studies. Vet Parasitol 19:100359

    Google Scholar 

  • Cabada MM, Morales ML, Webb CM, Yang L, Bravenec CA, Lopez M, Bascope R, White AC, Gotuzzo E (2018) Socioeconomic factors associated with Fasciola hepatica infection among children from 26 communities of the Cusco Region of Peru. Am J Trop Med Hyg 99:1180–1185

    Article  PubMed  PubMed Central  Google Scholar 

  • Caravedo MA, Cabada MM (2020) Human fascioliasis: current epidemiological status and strategies for diagnosis, treatment, and control. Res Rep Trop Med 11:149–158

    PubMed  PubMed Central  Google Scholar 

  • Carnevale S, Malandrini JB, Pantano ML, Soria CC, Rodrigues-Silva R, Machado-Silva JR, Velásquez JN, Kamenetzky L (2017) First genetic characterization of Fasciola hepatica in Argentina by nuclear and mitochondrial gene markers. Vet Parasitol 245:34–38

    Article  CAS  PubMed  Google Scholar 

  • Charlier J, Rinaldi L, Musella V, Ploeger HW, Chartier C, Vineer HR, Hinney B, von Samson-Himmelstjerna G, Bacescu B, Mickiewicz M, Mateus TL, Martinez-Valladares M, Quealy S, Azaizeh H, Sekovska B, Akkari H, Petkevicius S, Hektoen L, Hoglund J et al (2020) Initial assessment of the economic burden of major parasitic helminth infections to the ruminant livestock industry in Europe. Prev Vet Med 182:105103

    Article  CAS  PubMed  Google Scholar 

  • Chougar L, Amor N, Farjallah S (2019) New insight into genetic variation and haplotype diversity of Fasciola hepatica from Algeria. Parasitol Res 118:1179–1192

    Article  PubMed  Google Scholar 

  • Corrales JL, Cwiklinski K, Verissimo CD, Dorey A, Lalor R, Jewhurst H, McEvoy A, Diskin M, Duffy C, Cosby SL, Keane OM (2021) Diagnosis of sheep fasciolosis caused by Fasciola hepatica using cathepsin L enzyme-linked immunosorbent assays (ELISA). Vet Parasitol 298:109517

    Article  Google Scholar 

  • Elliott T, Muller A, Brockwell Y, Murphy N, Grillo V, Toet HM, Anderson G, Sangster N, Spithill TW (2014) Evidence for high genetic diversity of NAD1 and COX1 mitochondrial haplotypes among triclabendazole resistant and susceptible populations and field isolates of Fasciola hepatica (liver fluke) in Australia. Vet Parasitol 200:90–96

    Article  CAS  PubMed  Google Scholar 

  • El-Tahawy AS, Bazh EK, Khalafalla RE (2017) Epidemiology of bovine fascioliasis in the Nile Delta region of Egypt: its prevalence, evaluation of risk factors, and its economic significance. Vet World 10:1241–1249

    Article  PubMed  PubMed Central  Google Scholar 

  • Fanke J, Charlier J, Steppin T, von Samson-Himmelstjerna G, Vercruysse J, Demeler J (2017) Economic assessment of Ostertagia ostertagi and Fasciola hepatica infections in dairy cattle herds in Germany. Vet Parasitol 240:39–48

    Article  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol 39:783–791

    Article  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and back ground selection. Genet 147:915–925

    Article  CAS  Google Scholar 

  • Fürst T, Keiser J, Utzinger J (2012) Global burden of human food-borne trematodiasis: a systematic review and meta-analysis. Lancet Infect Dis 12:210–221

    Article  PubMed  Google Scholar 

  • Hayward AD, Skuce PJ, McNeilly TN (2021) The influence of liver fluke infection on production in sheep and cattle: a meta-analysis. Int J Parasitol 21:142–149

    Google Scholar 

  • Ichikawa-Seki M, Ortiz P, Cabrera M, Hobán C, Itagaki T (2016) Molecular characterization and phylogenetic analysis of Fasciola hepatica from Peru. Parasitol Int 65:171–174

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa-Seki M, Peng M, Hayashi K, Shoriki T, Mohanta UK, Shibahara T, Itagaki T (2017) Nuclear and mitochondrial DNA analysis reveals that hybridization between Fasciola hepatica and Fasciola gigantica occurred in China. Parasitol 144:206–213

    Article  CAS  Google Scholar 

  • Itagaki T, Kikawa M, Sakaguchi K, Shimo J, Terasaki K, Shibahara T, Fukuda K (2005) Genetic characterization of parthenogenic Fasciola sp. in Japan on the basis of the sequences of ribosomal and mitochondrial DNA. Parasitology 131:679–685

    Article  CAS  PubMed  Google Scholar 

  • Jia W, Yan H, Lou Z, Ni X, Dyachenko V, Li H, Littlewood DTJ (2012) Mitochondrial genes and genomes support a cryptic species of tapeworm within Taenia taeniaeformis. Acta Trop 123:154–163

    Article  CAS  PubMed  Google Scholar 

  • Leigh JW, Bryant D (2015) POPART: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116

    Article  Google Scholar 

  • Li YL, Kong XY, Yu ZN, Kong J, Ma S, Chen LM (2009) Genetic diversity and historical demography of Chinese shrimp Feneropenaeus chinensis in Yellow Sea and Bohai Sea based on mitochondrial DNA analysis. Afr J Biotechnol 8:1193–1202

    CAS  Google Scholar 

  • Maddison DR, Swofford DL, Maddison WP (1997) NEXUS: an extensible file format for systematic information. Syst Biol 46:590–621

    Article  CAS  PubMed  Google Scholar 

  • Mahmood Q, Younus M, Sadiq S, Iqbal S, Idress S, Khan S, Zia UR (2022) Prevalence and associated risk factors of cystic echinococcosis in food animals – a neglected and prevailing zoonosis. Pak Vet J 42:59–64

    Google Scholar 

  • Mahmoud HYAH, Ali AAA, Khalil AM, Amin YA, Ali AO (2022) The infection rate of Fasciola and Anaplasma in cattle and buffaloes in Qena Egypt. Int J Vet Sci 11:308–314

    Google Scholar 

  • Mas-Coma S, Valero MA, Bargues MD (2009) Chapter 2. Fasciola, lymnaeids and human fascioliasis, with a global overview on disease transmission, epidemiology, evolutionary genetics, molecular epidemiology and control. Adv Parasitol 69:41–146

    Article  PubMed  Google Scholar 

  • Mas-Coma S, Valero MA, Bargues MD (2014) Fascioliasis. Adv Exp Med Biol 766:77–114

    Article  PubMed  Google Scholar 

  • Mas-Coma S, Valero MA, Bargues MD (2019) Fascioliasis. Adv Exp Med Biol 1154:71–103

    Article  PubMed  Google Scholar 

  • Mazeri S, Rydevik G, Handel I (2017) Estimation of the impact of Fasciola hepatica infection on time taken for UK beef cattle to reach slaughter weight. Sci Rep 7:7319

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehmood K, Zhang H, Sabir AJ, Abbas RZ, Ijaz M, Durrani AZ, Saleem MH, Ur-Rehman M, Iqbal MK, Wang Y, Ahmad HI, Abbas T, Hussain R, Ghori MT, Ali S, Khan AU, Li J (2017) A review on epidemiology, global prevalence and economical losses of fasciolosis in ruminants. Microb Pathog 109:253–262

    Article  PubMed  Google Scholar 

  • Mo’awad HFM, Sobhy MM, Ismail TF, Enbaawy M (2022) Seroprevalence of Coxiella burnetti (Q fever) in cows and buffaloes in Egypt. Int J Vet Sci 11:16–22

    Article  Google Scholar 

  • Moendeg KJ, Angeles JMM, Nakao R, Leonardo LR, Fontanilla IKC, Goto Y, Kirinoki M, Villacorte EA, Rivera PT, Inoue N, Chigusa Y, Kawazu SI (2017) Geographic strain differentiation of Schistosoma japonicum in the Philippines using microsatellite markers. PLoS Negl Trop Dis 11:1–14

    Article  Google Scholar 

  • Munita MP, Rea R, Martinez-Ibeas AM, Byrne N, McGrath G, Munita-Corbalan LE, Sekiya M, Mulcahy G, Sayers RG (2019) Liver fluke in Irish sheep: prevalence and associations with management practices and co-infection with rumen fluke. Parasit Vectors 12:525

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100

    Article  CAS  PubMed  Google Scholar 

  • Reaghi S, Haghighi A, Harandi MF, Spotin A, Arzamani K, Rouhani S (2016) Molecular characterization of Fasciola hepatica and phylogenetic analysis based on mitochondrial (nicotiamide adenine dinucleotide dehydrogenase subunit I and cytochrome oxidase subunit I) genes from the North-East of Iran. Vet World 9:1034–1038

    Article  PubMed  PubMed Central  Google Scholar 

  • Rouhani S, Raeghi S, Spotin A (2017) Spermatogenic and phylo-molecular characterizations of isolated Fasciola spp. from cattle, north West Iran. Pak J Biol Sci 20:204–209

    Article  CAS  PubMed  Google Scholar 

  • Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34:3299–3302

    Article  CAS  PubMed  Google Scholar 

  • Sabourin E, Alda P, Vázquez A, Hurtrez-Boussès S, Vittecoq M (2018) Impact of human activities on Fasciolosis transmission. Trends Parasitol 34:891–903

    Article  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sarkari B, Parhoode M, Abdolahi Khabisi S, Shafiei R, Mohammadi-Ghalehbin B (2017) Genetic diversity of Fasciola spp. isolates from northern part of Iran: comparison with southwestern isolates. J Parasit Dis 41:768–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semyenova SK, Morozova EV, Chrisanfova GG, Gorokhov VV, Arkhipov IA, Moskvin AS, Movsessyan SO, Ryskov AP (2006) Genetic differentiation in Eastern European and Western Asian populations of the liver fluke, Fasciola hepatica, as revealed by mitochondrial nad1 and cox1 genes. J Parasitol 92:525–530

    Article  CAS  PubMed  Google Scholar 

  • Stephens JC, Schneider JA, Tanguay DA, Choi J, Acharya T, Stanley SE, Jiang R, Messer CJ, Chew A, Han JH (2001) Haplotype variation and linkage disequilibrium in 313 human genes. Sci 293:489–493

    Article  CAS  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc National Acad Sci 101:11030–11035

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Kumar S (2021) MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol. https://doi.org/10.1093/molbev/msab120

  • Thang TN, Hakim H, Rahimi RR, Ichikawa-Seki M (2019) Molecular analysis reveals expansion of Fasciola hepatica distribution from Afghanistan to China. Parasitol Int 72:101930

    Article  CAS  PubMed  Google Scholar 

  • Vamathevan JJ, Hasan S, Emes RD, Amrine-Madsen H, Rajagopalan D, Topp SD, Kumar V, Word M, Simmons MD, Foord SM (2008) The role of positive selection in determining the molecular cause of species differences in disease. BMC Evol Biol 8:1–14

    Article  Google Scholar 

  • Vilas R, Vázquez-Prieto S, Paniagua E (2012) Contrasting patterns of population genetic structure of Fasciola hepatica from cattle and sheep: implications for the evolution of anthelmintic resistance. Infect Genet Evol 12:45–52

    Article  PubMed  Google Scholar 

  • Webb CM, Cabada MM (2018) Recent developments in the epidemiology, diagnosis, and treatment of Fasciola infection. Curr Opin Infect Dis 31:409–414

    Article  PubMed  Google Scholar 

  • Yin F, Gasser RB, Li F, Bao M, Huang W, Zou F, Zhao G, Wang C, Yang X, Zhou Y, Zhao J, Fang R, Hu M (2016) Population structure of Haemonchus contortus from seven geographical regions in China, determined on the basis of microsatellite markers. Parasit Vectors 9:586

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Data availability statement

All data supporting the conclusions of this article are included in the article.

Funding

We acknowledge the funding received from the National Key Research and Development Program (2022YFC2304000; 2022YFD1302101), NBCITS (CARS-37) and Central Public-Interest Scientific Institution Basal Research Fund (Y2022GH13; 1610312020016).

Author information

Authors and Affiliations

Authors

Contributions

MAA, AK, LL, and HBY conceptualized the study. The methodology was designed by MAA, MS, RMAA, and BA. Formal analysis was carried out by AK, MAA, RMAA, WQ, and MS. Writing of the original draft was done by MAA and AK while WZJ, HBY, and BQF edited the draft. WZJ supervised the project.

Corresponding authors

Correspondence to Hong-Bin Yan or Wan-Zhong Jia.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Section Editor: Xing-Quan Zhu

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvi, M.A., Khalid, A., Ali, R.M.A. et al. Genetic variation and population structure of Fasciola hepatica: an in silico analysis. Parasitol Res 122, 2155–2173 (2023). https://doi.org/10.1007/s00436-023-07917-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-023-07917-0

Keywords

Navigation