Skip to main content

Advertisement

Log in

The antimicrobial peptides LL-37, KR-20, FK-13 and KR-12 inhibit the growth of a sensitive and a metronidazole-resistant strain of Trichomonas vaginalis

  • Research
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The parasite Trichomonas vaginalis is the aetiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease worldwide. This infection often remains asymptomatic and is related to several health complications. The traditional treatment for trichomoniasis uses drugs of the 5-nitroimidazole family, such as metronidazole; however, scientific reports indicate an increasing number of drug-resistant strains. Antimicrobial peptides could be an alternative or complementary treatment. In this sense, one attractive candidate is the human cathelicidin, being LL-37 its active form. LL-37 possesses microbicidal activity against many microorganisms such as bacteria, Candida albicans, and Entamoeba histolytica. Shorter sequences derived from this peptide, such as KR-20, FK-13 and KR-12, have been shown to possess a higher microbicidal effect than LL-37. In this study, we determined the activity of LL-37 and its derivatives against T. vaginalis, which was unknown. The results showed that the four peptides (LL-37, KR-20, FK-13-NH2 and KR-12) decreased the viability of T. vaginalis on a 5-nitroimidazole-sensitive and a 5-nitroimidazole-resistant strain; however, KR-20 was the most effective peptide, followed by FK-13-NH2. Low concentrations of all peptides showed a better effect when combined with metronidazole in the sensitive and resistant T. vaginalis strains. These results are promising for potential future therapeutic uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  • Anaya-Lopez JL, Lopez-Meza JE, Baizabal-Aguirre VM, Cano-Camacho H, Ochoa-Zarzosa A (2006) Fungicidal and cytotoxic activity of a capsicum chinense defensin expressed by endothelial cells. Biotech Lett 28(14):1101–1108

    Article  CAS  Google Scholar 

  • Bandeira ICJ, Bandeira-Lima D, Mello CP, Pereira TP, De RRPPB, Sampaio TL, Falcão CB, Rádis-Baptista G, Martins AMC (2018) Antichagasic effect of crotalicidin, a cathelicidin-like vipericidin, found in crotalus durissus terrificus rattlesnake’s venom gland. Parasitology 145(8):1059–1064

    Article  PubMed  CAS  Google Scholar 

  • Butler SE, Augostini P, Secor WE (2010) Mycoplasma hominis infection of trichomonas vaginalis is not associated with metronidazole-resistant trichomoniasis in clinical isolates from the united states. Parasitol Res 107(4):1023–1027

    Article  PubMed  Google Scholar 

  • Chow JYC, Li ZJ, Wu WKK, Cho CH (2013) Cathelicidin a potential therapeutic peptide for gastrointestinal inflammation and cancer. World J Gastroenterol: WJG 19(18):2731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diamond LS, Harlow DR, Cunnick CC (1978) A new medium for the axenic cultivation of entamoeba histolytica and other entamoeba. Trans R Soc Trop Med Hyg 72(4):431–432

    Article  PubMed  CAS  Google Scholar 

  • Dorschner RA, Lopez-Garcia B, Peschel A, Kraus D, Morikawa K, Nizet V, Gallo RL (2006) The mammalian ionic environment dictates microbial susceptibility to antimicrobial defense peptides. FASEB J 20(1):35–42

    Article  PubMed  CAS  Google Scholar 

  • Feng X, Sambanthamoorthy K, Palys T, Paranavitana C (2013) The human antimicrobial peptide ll-37 and its fragments possess both antimicrobial and antibiofilm activities against multidrug-resistant acinetobacter baumannii. Peptides 49:131–137

    Article  PubMed  CAS  Google Scholar 

  • Gangwar M, Gautam MK, Sharma AK, Tripathi YB, Goel R, Nath G (2014) Antioxidant capacity and radical scavenging effect of polyphenol rich mallotus philippenensis fruit extract on human erythrocytes: an in vitro study. Sci World J 2014

  • Geitani R, Moubareck CA, Costes F, Marti L, Dupuis G, Sarkis DK, Touqui L (2022) Bactericidal effects and stability of ll-37 and cama in the presence of human lung epithelial cells. Microbes Infect 24(3):104928

    Article  PubMed  CAS  Google Scholar 

  • Gunasekera S, Muhammad T, Strömstedt AA, Rosengren KJ, Göransson U (2020) Backbone cyclization and dimerization of ll-37-derived peptides enhance antimicrobial activity and proteolytic stability. Front Microbiol 11:168

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernandez-Flores J, Rodriguez M, Gastelum Arellanez A, Alvarez-Morales A, Avila E (2015) Effect of recombinant prophenin 2 on the integrity and viability of trichomonas vaginalis. BioMed Res Int 2015

  • Huang H-N, Chuang C-M, Chen J-Y, Chieh-Yu P (2019) Epinecidin-1: a marine fish antimicrobial peptide with therapeutic potential against trichomonas vaginalis infection in mice. Peptides 112:139–148

    Article  PubMed  CAS  Google Scholar 

  • Infante VV, Miranda-Olvera AD, De Leon-Rodriguez LM, Anaya-Velazquez F, Rodriguez MC, Avila EE (2011) Effect of the antimicrobial peptide tritrpticin on the in vitro viability and growth of trichomonas vaginalis. Curr Microbiol 62(1):301–306

    Article  PubMed  CAS  Google Scholar 

  • Johnston VJ, Mabey DC (2008) Global epidemiology and control of trichomonas vaginalis. Curr Opin Infect Dis 21(1):56–64

    Article  PubMed  Google Scholar 

  • Kang H-K, Kim C, Seo CH, Park Y (2017) The therapeutic applications of antimicrobial peptides (amps): a patent review. J Microbiol 55(1):1–12

    Article  PubMed  CAS  Google Scholar 

  • Kim EY, Rajasekaran G, Shin SY (2017) Ll-37-derived short antimicrobial peptide kr-12-a5 and its d-amino acid substituted analogs with cell selectivity, anti-biofilm activity, synergistic effect with conventional antibiotics, and anti-inflammatory activity. Eur J Med Chem 136:428–441

    Article  PubMed  CAS  Google Scholar 

  • Kirkcaldy RD, Augostini P, Asbel LE, Bernstein KT, Kerani RP, Mettenbrink CJ, Pathela P, Schwebke JR, Secor WE, Workowski KA (2012) Trichomonas vaginalis antimicrobial drug resistance in 6 us cities, std surveillance network, 2009–2010. Emerg Infect Dis 18(6):939

    Article  PubMed  PubMed Central  Google Scholar 

  • Kissinger PJ, Gaydos CA, Seña AC, Scott McClelland R, Soper D, Secor WE, Legendre D, Workowski KA, Muzny CA (2022) Diagnosis and management of trichomonas vaginalis: Summary of evidence reviewed for the 2021 centers for disease control and prevention sexually transmitted infections treatment guidelines. Clin Infect Dis 74(Supplement_2):S152–S161

    Article  PubMed  CAS  Google Scholar 

  • Li X, Li Y, Han H, Miller DW, Wang G (2006) Solution structures of human ll-37 fragments and nmr-based identification of a minimal membrane-targeting antimicrobial and anticancer region. J Am Chem Soc 128(17):5776–5785

    Article  PubMed  CAS  Google Scholar 

  • Lin M-C, Hui C-F, Chen J-Y, Wu J-L (2012) The antimicrobial peptide, shrimp anti-lipopolysaccharide factor (salf), inhibits proinflammatory cytokine expressions through the mapk and nf-κb pathways in trichomonas vaginalis adherent to hela cells. Peptides 38(2):197–207

    Article  PubMed  CAS  Google Scholar 

  • Lloyd D, Pedersen JZ (1985) Metronidazole radical anion generation in vivo in trichomonas vaginalis: oxygen quenching is enhanced in a drug-resistant strain. J Gen Microbiol 131(1):87–92

    PubMed  CAS  Google Scholar 

  • Luo Y, McLean DT, Linden GJ, McAuley DF, McMullan R, Lundy FT (2017) The naturally occurring host defense peptide, ll-37, and its truncated mimetics ke-18 and kr-12 have selected biocidal and antibiofilm activities against candida albicans, staphylococcus aureus, and Escherichia coli in vitro. Front Microbiol 8:544

    Article  PubMed  PubMed Central  Google Scholar 

  • Marques-Silva M, Lisboa C, Gomes N, Rodrigues A (2021) Trichomonas vaginalis and growing concern over drug resistance: a systematic review. J Eur Acad Dermatol Venereol 35(10):2007–2021

    Article  PubMed  CAS  Google Scholar 

  • Marr A, Cen S, Hancock R, McMaster W (2016) Identification of synthetic and natural host defense peptides with leishmanicidal activity. Antimicrob Agents Chemother 60(4):2484–2491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Masha SC, Cools P, Sanders EJ, Vaneechoutte M, Crucitti T (2019) Trichomonas vaginalis and hiv infection acquisition: a systematic review and meta-analysis. Sex Transm Infect 95(1):36–42

    Article  PubMed  Google Scholar 

  • Meites E, Gaydos CA, Hobbs MM, Kissinger P, Nyirjesy P, Schwebke JR, Secor WE, Sobel JD, Workowski KA (2015) A review of evidence-based care of symptomatic trichomoniasis and asymptomatic trichomonas vaginalis infections. Clin Infect Dis 61(suppl_8):S837–S848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murakami M, Lopez-Garcia B, Braff M, Dorschner RA, Gallo RL (2004) Postsecretory processing generates multiple cathelicidins for enhanced topical antimicrobial defense. J Immunol 172(5):3070–3077

    Article  PubMed  CAS  Google Scholar 

  • Murakami M, Dorschner RA, Stern LJ, Lin KH, Gallo RL (2005) Expression and secretion of cathelicidin antimicrobial peptides in murine mammary glands and human milk. Pediatr Res 57(1):10

    Article  PubMed  CAS  Google Scholar 

  • Mutwiri G, Henk W, Enright F, Corbeil L (2000) Effect of the antimicrobial peptide, d-hecate, on trichomonads. J Parasitol 86(6):1355–1359

    Article  PubMed  CAS  Google Scholar 

  • Nagant C, Pitts B, Nazmi K, Vandenbranden M, Bolscher J, Stewart PS, Dehaye J-P (2012) Identification of peptides derived from the human antimicrobial peptide ll-37 active against biofilms formed by pseudomonas aeruginosa using a library of truncated fragments. Antimicrob Agents Chemother 56(11):5698–5708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Odds FC (2003) Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 52(1):1–1

    Article  PubMed  CAS  Google Scholar 

  • Pachón-Ibáñez ME, Smani Y, Pachón J, Sánchez-Céspedes J (2017) Perspectives for clinical use of engineered human host defense antimicrobial peptides. FEMS Microbiol Rev 41(3):323–342

    Article  PubMed  PubMed Central  Google Scholar 

  • Padilla-Vaca F, Anaya-Velázquez F (1997) Biochemical properties of a neuraminidase of trichomonas vaginalis. J Parasitol 83(6):1001–1006

    Article  PubMed  CAS  Google Scholar 

  • Rajasekaran G, Kim EY, Shin SY (2017) Ll-37-derived membrane-active fk-13 analogs possessing cell selectivity, anti-biofilm activity and synergy with chloramphenicol and anti-inflammatory activity. Biochim Biophys Acta Biomembr 1859(5):722–733

    Article  PubMed  CAS  Google Scholar 

  • Rico-Mata R, De Leon-Rodriguez LM, Avila EE (2013) Effect of antimicrobial peptides derived from human cathelicidin ll-37 on entamoeba histolytica trophozoites. Exp Parasitol 133(3):300–306

    Article  PubMed  CAS  Google Scholar 

  • Ridyard KE, Overhage J (2021) The potential of human peptide ll-37 as an antimicrobial and anti-biofilm agent. Antibiotics 10(6):650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shurko JF, Galega RS, Li C, Lee GC (2018) Evaluation of ll-37 antimicrobial peptide derivatives alone and in combination with vancomycin against s. Aureus. J Antibiot 71(11):971–974

    Article  CAS  Google Scholar 

  • Sobel J, Nyirjesy P, Brown W (2001) Tinidazole therapy for metronidazole-resistant vaginal trichomoniasis. Clin Infect Dis 33(8):1341–1346

    Article  PubMed  CAS  Google Scholar 

  • Son M, Lee Y, Hwang H, Hyun S, Yu J (2013) Disruption of interactions between hydrophobic residues on nonpolar faces is a key determinant in decreasing hemolysis and increasing antimicrobial activities of α-helical amphipathic peptides. ChemMedChem 8(10):1638–1642

    Article  PubMed  CAS  Google Scholar 

  • Sørensen OE, Follin P, Johnsen AH, Calafat J, Tjabringa GS, Hiemstra PS, Borregaard N (2001) Human cathelicidin, hcap-18, is processed to the antimicrobial peptide ll-37 by extracellular cleavage with proteinase 3. Blood 97(12):3951–3959

    Article  PubMed  Google Scholar 

  • Svensson D, Wilk L, Mörgelin M, Herwald H, Nilsson B-O (2016) Ll-37-induced host cell cytotoxicity depends on cellular expression of the globular c1q receptor (p33). Biochem J 473(1):87–98

    Article  PubMed  CAS  Google Scholar 

  • Vázquez-Rivera D, González O, Guzmán-Rodríguez J, Díaz-Pérez AL, Ochoa-Zarzosa A, López-Bucio J, Meza-Carmen V, Campos-García J (2015) Cytotoxicity of cyclodipeptides from pseudomonas aeruginosa pao1 leads to apoptosis in human cancer cell lines. BioMed Res Int 2015

  • Wang G (2008) Structures of human host defense cathelicidin ll-37 and its smallest antimicrobial peptide kr-12 in lipid micelles. J Biol Chem 283(47):32637–32643

    Article  PubMed  CAS  Google Scholar 

  • WHO (2018) Report on global sexually transmitted infection surveillance, 2018. Geneva: World health organization; 2018. (World Health Organization). 63

  • Xhindoli D, Pacor S, Benincasa M, Scocchi M, Gennaro R, Tossi A (2016) The human cathelicidin ll-37—a pore-forming antibacterial peptide and host-cell modulator. Biochim Biophys Acta Biomembr 1858(3):546–566

    Article  CAS  Google Scholar 

  • Yamasaki K, Schauber J, Coda A, Lin H, Dorschner RA, Schechter NM, Bonnart C, Descargues P, Hovnanian A, Gallo RL (2006) Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. FASEB J 20(12):2068–2080

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Good D, Mosaiab T, Liu W, Ni G, Kaur J, Liu X, Jessop C, Yang L, Fadhil R (2020) Significance of ll-37 on immunomodulation and disease outcome. BioMed Res Int 2020

  • Zhang Y, Lakshmaiah Narayana J, Wu Q, Dang X, Wang G (2021) Structure and activity of a selective antibiofilm peptide sk-24 derived from the nmr structure of human cathelicidin ll-37. Pharmaceuticals 14(12):1245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zharkova MS, Orlov DS, Golubeva OY, Chakchir OB, Eliseev IE, Grinchuk TM, Shamova OV (2019) Application of antimicrobial peptides of the innate immune system in combination with conventional antibiotics—a novel way to combat antibiotic resistance? Front Cell Infect Microbiol 9:128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

The Consejo Nacional de Ciencia y Tecnología (CONACYT, Project 2019–2000065) and the Universidad de Guanajuato (project 099/2019) provided financial support. The funding sources did not influence the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Contributions

María G. Ramírez-Ledesma (ORCID 0000–0002-4164–2531): conceptualization, methodology, formal analysis, investigation, writing—original draft preparation.

Mayra C. Rodriguez: investigation.

Nayeli Alva-Murillo: supervision, resources, and funding acquisition.

Eva E. Avila: conceptualization, supervision, writing—review and editing and resources.

Corresponding author

Correspondence to Eva E. Avila.

Ethics declarations

Ethics approval

The Institutional Bioethics Committee from the Universidad de Guanajuato approved the protocol (CIBIUG-P32-2019).

Consent to participate and for publication

All the authors approved their participation and the publication of this manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Section Editor: Dietmar Steverding

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Ledesma, M.G., Rodríguez, M.C., Alva-Murillo, N. et al. The antimicrobial peptides LL-37, KR-20, FK-13 and KR-12 inhibit the growth of a sensitive and a metronidazole-resistant strain of Trichomonas vaginalis. Parasitol Res 121, 3503–3512 (2022). https://doi.org/10.1007/s00436-022-07674-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-022-07674-6

Keywords

Navigation