Skip to main content

Advertisement

Log in

MicroRNA profiling of Neospora caninum tachyzoites (NC-1) using a high-throughput approach

  • Protozoology - Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Neospora caninum is an important pathogen commonly causing spontaneous abortion in livestock. The parasite is known to remain in cysts in an inactive state; or it can undergo expansive development within an intermediate host. However, the mechanisms that trigger the proliferation of N. caninum have not been thoroughly elucidated. For various organisms, it has been demonstrated that microRNAs (miRNAs) can act as important endogenous regulatory factors in gene regulation during cell differentiation and development. However, miRNAs and their function have not been studied in N. caninum. In this study, small RNA libraries from N. caninum tachyzoites (NC-1 strain) were analyzed using a high-throughput RNA sequencing technology combined with systematic bioinformatics analysis. A considerable number of novel miRNAs from N. caninum NC-1 strain tachyzoites were identified. Of the 300 miRNAs found by bioinformatics analysis, 10 were conserved miRNAs belonging to 10 metazoan miRNA families, while 290 were novel miRNAs. The expression of 13 novel miRNAs was verified by real-time quantitative PCR (qRT-PCR). Data from this study provided and identified authentic miRNAs for the first time in N. caninum. The study also introduces a framework for further investigations of RNAi-dependent regulatory mechanisms of the parasite and provides data for further understanding of N. caninum development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

miRNAs:

microRNAs

UTR:

untranslated region

RISC:

RNA-induced silencing complex

VSP:

variant surface protein

sncRNAs:

small non-coding RNA

nt:

nucleotide

qRT-PCR:

real-time quantitative PCR

References

  • Aitcheson N, Talbot S, Shapiro J, Hughes K, Adkin C, Butt T, Sheader K, Rudenko G (2005) VSG switching in Trypanosoma brucei: antigenic variation analysed using RNAi in the absence of immune selection. Mol Microbiol 57:1608–1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  • Baltimore D, Boldin MP, O'connell RM, Rao DS, Taganov KD (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9:839–845

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun L, Cannella D, Ortet P, Barakat M, Sautel CF, Kieffer S, Garin J, Bastien O, Voinnet O, Hakimi MA (2010) A complex small RNA repertoire is generated by a plant/fungal-like machinery and effected by a metazoan-like Argonaute in the single-cell human parasite Toxoplasma gondii. PLoS Pathog 6:e1000920

    Article  PubMed  PubMed Central  Google Scholar 

  • Cullen BR (2006) Viruses and microRNAs. Nat Genet 38(Suppl):S25–S30

    Article  CAS  PubMed  Google Scholar 

  • De S, Pal D, Ghosh SK (2006) Entamoeba histolytica: computational identification of putative microRNA candidates. Exp Parasitol 113:239–243

    Article  CAS  PubMed  Google Scholar 

  • Ding SW, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130:413–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dsouza M, Larsen N, Overbeek R (1997) Searching for patterns in genomic data. Trends Genet 13:497–498

    Article  CAS  PubMed  Google Scholar 

  • Dubey JP, Buxton D, Wouda W (2006) Pathogenesis of bovine neosporosis. J Comp Pathol 134:267–289

    Article  CAS  PubMed  Google Scholar 

  • Dubey JP, Schares G, Ortega-Mora LM (2007) Epidemiology and control of neosporosis and Neospora caninum. Clin Microbiol Rev 20:323–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao L, Cai P, Jiang N, Wang H, Chen Q (2010) Identification and characterization of microRNAs and endogenous siRNAs in Schistosoma japonicum. BMC Genomics 11:55

    Article  PubMed  PubMed Central  Google Scholar 

  • Huo J, Ma Y, Liu JJ, Ho YS, Liu S, Soh LY, Chen S, Xu S, Han W, Hong A, Lim SC, Lam KP (2016) Loss of Fas apoptosis inhibitory molecule leads to spontaneous obesity and hepatosteatosis. Cell Death Dis 7:e2091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    Article  CAS  PubMed  Google Scholar 

  • Khan A, Shaik JS, Sikorski P, Dubey JP, Grigg ME (2020) Neosporosis: an overview of its molecular epidemiology and pathogenesis. Engineering 6:10–19

    Article  CAS  Google Scholar 

  • Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216

    Article  CAS  PubMed  Google Scholar 

  • Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139

    Article  CAS  PubMed  Google Scholar 

  • Kuszewski J, Clore GM, Gronenborn AM (1994) Fast folding of a prototypic polypeptide: the immunoglobulin binding domain of streptococcal protein G. Protein Sci 3:1945–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    Article  CAS  PubMed  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739

    Article  CAS  PubMed  Google Scholar 

  • Lee HC, Li L, Gu W, Xue Z, Crosthwaite SK, Pertsemlidis A, Lewis ZA, Freitag M, Selker EU, Mello CC, Liu Y (2010) Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi. Mol Cell 38:803–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  • Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714

    Article  CAS  PubMed  Google Scholar 

  • Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lund E, Dahlberg JE (2006) Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs. Cold Spring Harb Symp Quant Biol 71:59–66

    Article  CAS  PubMed  Google Scholar 

  • Macchiaroli N, Cucher M, Zarowiecki M, Maldonado L, Kamenetzky L, Rosenzvit MC (2015) microRNA profiling in the zoonotic parasite Echinococcus canadensis using a high-throughput approach. Parasit Vectors 8:83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallick B, Ghosh Z, Chakrabarti J (2008) MicroRNA switches in Trypanosoma brucei. Biochem Biophys Res Commun 372:459–463

    Article  CAS  PubMed  Google Scholar 

  • Militello KT, Refour P, Comeaux CA, Duraisingh MT (2008) Antisense RNA and RNAi in protozoan parasites: working hard or hardly working? Mol Biochem Parasitol 157:117–126

    Article  CAS  PubMed  Google Scholar 

  • Miska EA (2005) How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev 15:563–568

    Article  CAS  PubMed  Google Scholar 

  • Moazed D (2009) Small RNAs in transcriptional gene silencing and genome defence. Nature 457:413–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore D, Reichel M, Spath E, Campero C (2013) Neospora caninum causes severe economic losses in cattle in the humid pampa region of Argentina. Trop Anim Health Prod 45:1237–1241

    Article  PubMed  Google Scholar 

  • Nash TE (2002) Surface antigenic variation in Giardia lamblia. Mol Microbiol 45:585–590

    Article  CAS  PubMed  Google Scholar 

  • Okamura K, Phillips MD, Tyler DM, Duan H, Chou YT, Lai EC (2008) The regulatory activity of microRNA* species has substantial influence on microRNA and 3' UTR evolution. Nat Struct Mol Biol 15:354–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ong SJ, Hsu HM, Liu HW, Chu CH, Tai JH (2006) Multifarious transcriptional regulation of adhesion protein gene ap65-1 by a novel Myb1 protein in the protozoan parasite Trichomonas vaginalis. Eukaryot Cell 5:391–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grasser FA, Van Dyk LF, Ho CK, Shuman S, Chien M, Russo JJ, Ju J, Randall G, Lindenbach BD, Rice CM, Simon V, Ho DD, Zavolan M, Tuschl T (2005) Identification of microRNAs of the herpesvirus family. Nat Methods 2:269–276

    Article  CAS  PubMed  Google Scholar 

  • Prucca CG, Slavin I, Quiroga R, Elias EV, Rivero FD, Saura A, Carranza PG, Lujan HD (2008) Antigenic variation in Giardia lamblia is regulated by RNA interference. Nature 456:750–754

    Article  CAS  PubMed  Google Scholar 

  • Ramaprasad A, Mourier T, Naeem R, Malas TB, Moussa E, Panigrahi A, Vermont SJ, Otto TD, Wastling J, Pain A (2015) Comprehensive evaluation of Toxoplasma gondii VEG and Neospora caninum LIV genomes with tachyzoite stage transcriptome and proteome defines novel transcript features. PLoS One 10:e0124473

    Article  PubMed  PubMed Central  Google Scholar 

  • Reichel MP, Alejandra Ayanegui-Alcerreca M, Gondim LF, Ellis JT (2013) What is the global economic impact of Neospora caninum in cattle - the billion dollar question. Int J Parasitol 43:133–142

    Article  PubMed  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277

    Article  CAS  PubMed  Google Scholar 

  • Robertson S, Diver LA, Alvarez-Madrazo S, Livie C, Ejaz A, Fraser R, Connell JM, Mackenzie SM, Davies E (2017) Regulation of corticosteroidogenic genes by microRNAs. Int J Endocrinol 2017:2021903

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruby JG, Stark A, Johnston WK, Kellis M, Bartel DP, Lai EC (2007) Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res 17:1850–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saraiya AA, Wang CC (2008) snoRNA, a novel precursor of microRNA in Giardia lamblia. PLoS Pathog 4:e1000224

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Liu X, Jia B, Lu H, Peng S, Piao X, Hou N, Cai P, Yin J, Jiang N, Chen Q (2012) A comparative study of small RNAs in Toxoplasma gondii of distinct genotypes. Parasit Vectors 5:186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao C, Rajewsky K (2009) MicroRNA control in the immune system: basic principles. Cell 136:26–36

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Vernooy SY, Guo M, Hay BA (2003) The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 13:790–795

    Article  CAS  PubMed  Google Scholar 

  • Xu MJ, Zhou DH, Huang SY, Zhao FR, Nisbet AJ, Lin RQ, Song HQ, Zhu XQ (2013) Comparative characterization of microRNA profiles of different genotypes of Toxoplasma gondii. Parasitology 140:1111–1118

    Article  CAS  PubMed  Google Scholar 

  • Yin J, Qu G, Cao L, Li Q, Fetterer R, Feng X, Liu Q, Wang G, Qi D, Zhang X, Miramontes E, Jenkins M, Zhang N, Tuo W (2012) Characterization of Neospora caninum microneme protein 10 (NcMIC10) and its potential use as a diagnostic marker for neosporosis. Vet Parasitol 187:28–35

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Pan X, Cobb GP, Anderson TA (2006) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289:3–16

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Stellwag EJ, Pan X (2009a) Large-scale genome analysis reveals unique features of microRNAs. Gene 443:100–109

    Article  CAS  PubMed  Google Scholar 

  • Zhang YQ, Chen DL, Tian HF, Zhang BH, Wen JF (2009b) Genome-wide computational identification of microRNAs and their targets in the deep-branching eukaryote Giardia lamblia. Comput Biol Chem 33:391–396

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Cai X, Bradley JE (2013) microRNAs in parasites and parasite infection. RNA Biol 10:371–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their helpful comments and suggestions. We also thank Line Elnif Thomsen (University of Copenhagen) for helpful English revision of the manuscript.

Availability of data and material

The datasets supporting the conclusions of this article are available in the Gene Expression Omnibus repository, [GSE107118, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE107118].

Funding

This work was supported by the funding of National Key R&D Program of China (2017YFD0500400), National Natural Science Foundation of China (31072125 and 31272549).

Author information

Authors and Affiliations

Authors

Contributions

GL and JY designed the study, analyzed results, and drafted the manuscript. GL and QS performed experiments. GL, LJ, HL, and JZ analyzed the data. All authors commented on and approved the final manuscript

Corresponding authors

Correspondence to Jixue Zhao or Jigang Yin.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Section Editor: Xing-Quan ZHU

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 165 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Jia, L., Shao, Q. et al. MicroRNA profiling of Neospora caninum tachyzoites (NC-1) using a high-throughput approach. Parasitol Res 120, 2165–2174 (2021). https://doi.org/10.1007/s00436-021-07155-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-021-07155-2

Key words

Navigation