Skip to main content

Advertisement

Log in

Effects of acaricide treatment and host intrinsic factors on tick acquisition and mortality in Boran cattle

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Ticks and associated pathogens pose serious threats to the health of livestock. To assess the efficacy of acaricide dip treatment (cypermethrin, chlorpyrifos, piperonyl butoxide, citronella), we assessed post-treatment tick acquisition and tick mortality of free-ranging Boran cattle inhabiting a wildlife-cattle ranch in Northern Tanzania. Because host intrinsic variables and exposure to ticks may substantially affect tick acquisition, we incorporated host sex, body mass, health condition, and distance traveled in models of tick acquisition. Using generalized linear mixed models that accounted for non-independence of individuals, we found that tick species richness increased with host body mass but was not significantly related to other factors. In contrast, tick abundance increased with time since acaricide treatment, was positively correlated with host body mass, and was higher in female than male cattle. Distance traveled and health condition did not predict tick acquisition. Overall, these patterns were similar when separately analyzing acquisition of the more common tick species (Rhipicephalus pulchellus, R. sanguineus sensu lato, and R. praetextatus). Logistic regression models suggested that tick mortality was high for a few days after acaricide dip treatment but declined steeply post-treatment; 3.5 days after treatment, only 50% of ticks were dead, and mortality declined further thereafter. Our results provide new information regarding tick acquisition patterns in this system including female-biased tick parasitism and support for the hypothesis that increased host body mass provides greater resources and thus supports higher ectoparasite abundance and species richness. The limited acaricide duration of action and effectiveness on all tick species calls for adjusting tick management practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbas RZ, Zaman MA, Colwell DD, Gilleard J, Iqbal Z (2014) Acaricide resistance in cattle ticks and approaches to its management: the state of play. Vet Parasitol 203(1–2):6–20

    Article  CAS  PubMed  Google Scholar 

  • Altshuler B (1981) Modeling of dose–response relationships. Environ Health Perspect 42:23–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antonovics J, Iwasa Y, Hassell M (1995) A generalized model of parasitoid, venereal, and vector-based transmission processes. Am Nat 145:661–675

    Article  Google Scholar 

  • Bartón K (2013) Model selection and model averaging based on information criteria (AICc and alike). Available at: http://cran.r-project.org/web/packages/MuMIn/index.html

  • Bates D, Maechler M (2009) lme4: Linear mixed-effects models using S4 classes. R package, version. http://lme4.r-forge.r-project.org/

  • Bennet GF (1969) Boophilus microplus (Acarina: Ixodidae): experimental infestations on cattle restrained from grooming. Exp Parasitol 26(3):323–328

    Article  Google Scholar 

  • Boughton RK, Joop G, Armitage SAO (2011) Outdoor immunology: methodological considerations for ecologists. Funct Ecol 25:81–100

    Article  Google Scholar 

  • Boyer N, Réale D, Marmet J, Pisanu B, Chapuis JL (2010) Personality, space use and tick load in an introduced population of Siberian chipmunks Tamias sibiricus. J Anim Ecol 79:538–547

    Article  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information–theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Calabrese JM, Brunner JL, Ostfeld RS (2011) Partitioning the aggregation of parasites on hosts into intrinsic and extrinsic components via an extended Poisson–gamma mixture model. PLoS One 6:e29215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chungsamarnyart N, Jiwajinda S (1992) Acaricidal activity of volatile oil from lemon and citronella grasses on tropical cattle ticks. Kasetsart J Nat Sci 26:46–51

    CAS  Google Scholar 

  • Crawley MJ (2005) Statistics. An introduction using R. John Wiley & Sons Ltd., Chichester

    Book  Google Scholar 

  • Davey RB, Miller JA, Miller RJ, George JE (2009) Effect of rainfall exposure immediately after a single dip treatment with Coumaphos on control of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) on infested cattle. J Med Entomol 46(1):93–99

    Article  PubMed  Google Scholar 

  • De Clercq EM, Vanwambeke SO, Sungirai M, Adehan S, Lokossou R, Madder M (2012) Geographic distribution of the invasive cattle tick Rhipicephalus microplus, a country-wide survey in Benin. Exp Appl Acarol 58:441–452

    Article  PubMed  Google Scholar 

  • Duneau D, Luijckx P, Ruder LF, Ebert D (2012) Sex-specific effects of a parasite evolving in a female-biased host population. BMC Biol 10:104

    Article  PubMed  PubMed Central  Google Scholar 

  • Elston DA, Moss R, Boulinier T, Arrowsmith C, Lambin X (2001) Analysis of aggregation, a worked example: numbers of ticks on red grouse chicks. Parasitology 122:563–569

    Article  CAS  PubMed  Google Scholar 

  • Esser HJ, Foley JE, Bongers F, Herre EA, Miller MJ, Prins HH, Jansen PA (2016) Host body size and the diversity of tick assemblages on Neotropical vertebrates. Int J Parasitol: Parasit Wildl 5(3):295–304

    Google Scholar 

  • FAO Corporate Document Repository (1994) A manual for primary animal health care workers. Unit 5: appearance of the healthy animal. Agriculture and Consumer Protection

  • Ferrari N, Cattadori IM, Nespereira J, Rizzoli A, Hudson PJ (2004) The role of host sex in parasite dynamics: field experiments on the yellow-necked mouse Apodemus flavicollis. Ecol Lett 7:88–94

    Article  Google Scholar 

  • Ferrari N, Rosá R, Pugliese A, Hudson P (2007) The role of sex in parasite dynamics: model simulations on transmission of Heliogmosomoides polygyrus in populations of yellow-necked mice, Apodemus flavicollis. Int J Parasitol 37:341–349

    Article  CAS  PubMed  Google Scholar 

  • Folstad I, Krater AJ (1992) Parasites, bright males, and the immunocompetence handicap. Am Nat 139:603–622

    Article  Google Scholar 

  • Gelman A, Su YS, Yajima M, Hill J, Pittau MG, Kermann J, Zheng T (2013) arm: data analysis using regression and multilevel/hierarchical models. https://cran.r-project.org/web/packages/arm/

  • Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24:699–711

    Article  CAS  PubMed  Google Scholar 

  • Hughes J, Albon SD, Irvine RJ, Woodin S (2009) Is there a cost of parasites to caribou? Parasitology 136:253–265

    Article  CAS  PubMed  Google Scholar 

  • Jetz W, Carbone C, Fulford J, Brown JH (2004) The scaling of animal space use. Science 306:266–268

    Article  CAS  PubMed  Google Scholar 

  • Jongejan F, Uilenberg G (2004) The global importance of ticks. Parasitology 129:S3–S14

    Article  PubMed  Google Scholar 

  • Juliana JR, St Khoklova IS, Wielebnowski N, Kotler K, Krasnov B (2014) Ectoparasitism and stress hormones: strategy of host exploitation, common host–parasite history and energetics matter. J Anim Ecol 83:1113–1123

    Article  Google Scholar 

  • Keesing F, Brunner J, Duerr S, Killilea M, LoGiudice K, Schmidt K, Vuong H, Ostfeld RS (2009) Hosts as ecological traps for the vector of Lyme disease. Biol Sci 276(1675):3911–3919

    Article  CAS  Google Scholar 

  • Keesing F, Allan BF, Young TP, Ostfeld RS (2013) Effects of wildlife and cattle on tick abundance in central Kenya. Ecol Appl 23:1410–1418

    Article  PubMed  Google Scholar 

  • Kiffner C, Lödige C, Alings M, Vor T, Rühe F (2010) Abundance estimation of Ixodes ticks on roe deer (Capreolus capreolus). Exp Appl Acarol 52:73–84

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiffner C, Vor T, Hagedorn P, Niedrig M, Rühe F (2011) Body-mass or sex-biased tick parasitism in roe deer (Capreolus capreolus)? A GAMLSS approach. Med Vet Entomol 25:39–45

    Article  CAS  PubMed  Google Scholar 

  • Kiffner C, Stanko M, Morand S, Khokhlova IS, Shenbrot GI, Laudisoit A, Liers H, Krasnov BR (2013) Sex-biased parasitism is not universal: evidence from rodent–flea associations from three biomes. Oecologia 173(3):1009–1022

    Article  PubMed  Google Scholar 

  • Kiffner C, Stanko M, Morand S, Khokhlova IS, Shenbrot GI, Laudisoit A, Liers H, Krasnov BR (2014) Variable effects of host characteristics on species richness of flea infracommunities in rodents from three continents. Parasitol Res 113:2777–2788

    Article  PubMed  Google Scholar 

  • Kiffner C, Nagar S, Kollmar C, Kioko J (2016) Wildlife species richness and densities in wildlife corridors of Northern Tanzania. J Nat Conserv 31:29–37

    Article  Google Scholar 

  • Kioko J, Baker J, Shannon A, Kiffner C (2015) Ethnoecological knowledge of ticks and treatment of tick-borne diseases among Maasai people in Northern Tanzania. Vet World 8:755–762

    Article  PubMed  PubMed Central  Google Scholar 

  • Kohari D, Kosako T, Fulaswa M, Tsukada H (2007) Effect of environmental enrichment by providing trees as rubbing objects in grassland: grazing cattle need tree-grooming. Anim Sci J 78(4):413–416

    Article  Google Scholar 

  • Krasnov BR, Morand S, Hawlena H, Khokhlova IS, Shenbrot GI (2005) Sex-biased parasitism, seasonality and sexual size dimorphism in desert rodents. Oecologia 146:209–217

    Article  PubMed  Google Scholar 

  • Kutsukake N, Clutton-Brock T (2006) Aggression and submission reflect reproductive conflict between females in cooperatively breeding meerkats Suricata suricatta. Behav Ecol Sociobiol 59:541–548

    Article  Google Scholar 

  • L’Hostis M, Diarra O, Seegers H (1994) Sites of attachment and density assessment of female Ixodes ricinus (Acari: Ixodidae) on dairy cows. Exp Appl Acarol 18:681–689

    PubMed  Google Scholar 

  • Lightfoot CJ, Norval RAI (1981) Tick problems in wildlife in Zimbabwe. 1. The effects of tick parasitism on wild ungulates. S Afr J Wildl Res 11:41–45

    Google Scholar 

  • Lindenfors P, Nunn CL, Jones KE, Cunnungham AA, Sechrest W, Gittleman JL (2007) Parasite species richness in carnivores: effects of host body mass, latitude, geographical range and population density. Global Ecol Biogeogr 16:496–509

    Article  Google Scholar 

  • LoGiudice K, Ostfeld RS, Schmidt KA, Keesing F (2002) The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. Proc Natl Acad Sci U S A 100:567–571

    Article  Google Scholar 

  • MacLeod J (1975) Apparent host selection by some African tick species. Oecologia 19:359–370

    Article  PubMed  Google Scholar 

  • Miguel E, Boulinier T, De G–WM, Caron A, Fritz H, Grobois V (2014) Characterising African tick communities at a wild–domestic interface using repeated sampling protocols and models. Acta Trop 138:5–14

    Article  PubMed  Google Scholar 

  • Miller MR, White A, Wilson K, Boots M (2007) The population dynamical implications of male-biased parasitism in different mating systems. PLoS One 2:e624

    Article  PubMed  PubMed Central  Google Scholar 

  • Navarro-Gonzalez N, Verheyden H, Hoste H, Cargnelutti B, Lourtet B, Merlet J, Daufresne T, Lavín S, AJM H, Morand S, Serrano E (2011) Diet quality and immunocompetence influence parasite load of roe deer in a fragmented landscape. Eur J Wildl Res 57:639–645

    Article  Google Scholar 

  • Ostfeld RS, Canham CD, Oggenfuss K, Winchcombe RJ, Keesing F (2006a) Climate, deer, rodents, and acorns as determinants of variation in Lyme-disease risk. PLoS Biol 4:e145

    Article  PubMed  PubMed Central  Google Scholar 

  • Ostfeld RS, Price A, Hornbostel VL, Benjamin MA, Keesing F (2006b) Controlling ticks and tick-borne zoonoses with biological and chemical agents. Bioscience 56:383–394

    Article  Google Scholar 

  • Parola P, Raoult D (2001) Ticks and tickborne bacterial diseases in humans: an emerging infectious threat. Clin Infect Dis 32:897–928

    Article  CAS  PubMed  Google Scholar 

  • Perkins SE, Cattadori IM, Tagliapietra V, Rizzoli AP, Hudson PJ (2003) Empirical evidence for key hosts in persistence of a tick-borne disease. Int J Parasitol 33:909–917

    Article  PubMed  Google Scholar 

  • Poulin R (1996) Sexual inequalities in helminth infections: a cost of being males? Am Nat 147:287–295

    Article  Google Scholar 

  • Poulin R, George-Nascimento M (2007) The scaling of total parasite biomass with host body mass. Int J Parasitol 37:359–364

    Article  PubMed  Google Scholar 

  • Pound JM, Miller JA, George JE, Fish D (2009) The United States Department of Agriculture northeast area-wide tick control project: history and protocol. Vector Borne Zoonotic Dis 9:365–370

    Article  PubMed  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–900051–07–0, URL http://www.R–project.org

  • Raouf S, Smith LC, Bomberger Brown M, Wingfield JC, Brown C (2006) Glucocorticoid hormone levels increase with group size and parasite load in cliff swallows. Anim Behav 71:39–48

    Article  Google Scholar 

  • Roberts ML, Buchanan KL, Hasselquist D, Evans MR (2007) Effects of testosterone and corticosterone on immunocompetence in the zebra finch. Horm Behav 51:26–134

    Article  Google Scholar 

  • Romero ML, Wingfield JC (2015) Tempests, predators, poxes, and people: stress in wild animals and how they cope. Oxford University Press, Oxford

    Google Scholar 

  • Roush RT, McKenzie JA (1987) Ecological genetics of insecticide and acaricide resistance. Annu Rev Entomol 32:361–380

    Article  CAS  PubMed  Google Scholar 

  • Samish M, Ginsberg H, Glazer I (2004) Biological control of ticks. Parasitology 129:S389–S403

    Article  PubMed  Google Scholar 

  • Schalk G, Forbes MR (1997) Male biases in parasitism of mammals: effects of study type, host age, and parasite taxon. Oikos 78:67–74

    Article  Google Scholar 

  • Schroder B, Reilly BK (2013) A comparison between tick species collected in controlled and control free area on a game ranch in South Africa. J S Afr Vet Med Assoc 84:1–5

    Google Scholar 

  • Seeman OD, Nahrung HF (2004) Female biased parasitism and the importance of host generation overlap in a sexually transmitted parasite of beetles. J Parasitol 90:114–118

    Article  PubMed  Google Scholar 

  • Semmler M, Abdel-Ghaffar F, KAS A-R, Mehlhorn H (2011) Comparison of the tick repellent efficacy of chemical and biological products originating from Europe and the USA. Parasitol Res 4:899–904

    Article  Google Scholar 

  • Shaw DJ, Grenfell BT, Dobson AP (1998) Patterns of macroparasite aggregation in wildlife host populations. Parasitology 117:597–610

    Article  PubMed  Google Scholar 

  • Sheldon BC, Verhulst S (1996) Ecological immunology: costly parasite defenses and trade offs in evolutionary ecology. Trends Ecol Evol 11:317–321

    Article  CAS  PubMed  Google Scholar 

  • Smith E, Parker D (2010) Tick communities at the expanding wildlife/cattle interface in the Eastern Cape Province, South Africa: implications for corridor disease. J S Afr Vet Med Assoc 81:237–240

    CAS  Google Scholar 

  • Sungirai M, Moyo DZ, de Clercq P, Madder M (2016) Communal farmers’ perceptions of tick-borne diseases affecting cattle and investigation of tick control methods practiced in Zimbabwe. Ticks Tick Borne Dis 7:1–9

    Article  PubMed  Google Scholar 

  • Thorsell W, Mikiver A, Tunón H (2006) Repelling properties of some plant materials on the tick Ixodes ricinus L. Phytomedicine 13:132–134

    Article  CAS  PubMed  Google Scholar 

  • Vudriko P, Okwee-Acai J, Tayebwa DS, Byaruhanga J, Kakooza S, Wampande E, Omara R, Muhindo JB, Tweyongyere R, Owiny DO, Hatta T, Tsuji N, Umemiya-Shirafuji R, Xuan X, Kanameda M, Fujisaki K, Suzuk H (2016) Emergence of multi-acaricide resistant Rhipicephalus ticks and its implication on chemical tick control in Uganda. Parasit Vectors 9:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker AR, Bouattour A, Camicas JL, Estrada-Peña A, Horak IG, Latif AA, Pegram RG, Preston PM (2014) Ticks of domestic animals in Africa: a guide to identification of species. Bioscience Reports, Edinburgh

    Google Scholar 

  • Warwick BT, Bak E, Baldassare J, Gregg E, Martinez R, Kioko J, Saning’o K, Kiffner C (2016) Abundance estimations of ixodid ticks on Boran cattle and Somali sheep in Northern Tanzania. Intern J Acarol 42:12–20

    Article  Google Scholar 

  • Zuk M, McKean KA (1996) Sex differences in parasite infections: patterns and processes. Int J Parasitol 26:1009–1024

    Article  CAS  PubMed  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

We thank the management of the Manyara Ranch Conservancy for continued support, allowing access to their cattle and their herders for assisting in data collection. We thank the staff of the School for Field Studies, Center for Wildlife Management Studies for assisting in project logistics. Thanks to two anonymous reviewers who provided constructive comments and to N. Diplock for help with editing. This study was carried with permission from TAWIRI/COSTECH, permit No. 2015-169-ER-2013-191.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Kiffner.

Appendix

Appendix

Fig. 4
figure 4

Frequency histograms of tick species richness and tick abundance on the head, ears, and neck of Boran cattle in Manyara Ranch, Tanzania

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grzeda, E., Maurer, T., Dannemann, C. et al. Effects of acaricide treatment and host intrinsic factors on tick acquisition and mortality in Boran cattle. Parasitol Res 116, 3163–3173 (2017). https://doi.org/10.1007/s00436-017-5633-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-017-5633-5

Keywords

Navigation