Skip to main content

Advertisement

Log in

Molecular identification of bacterial endosymbionts of Sappinia strains

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The genus Sappinia comprises free-living amoebae occurring worldwide in a variety of habitats such as soils, plant matter and freshwater ponds, but also animal faeces, and includes at present three species, S. pedata, S. diploidea and S. platani. The genus is potentially pathogenic, as indicated by the identification of S. pedata in a case of human amoebic encephalitis. Electron microscopy studies on some strains already revealed intracellular bacteria in Sappinia. In the current study, we performed 16S ribosomal RNA gene (rDNA) analysis of these bacterial endosymbionts. We first inferred relationships among Sappinia strains on the basis of 18S rDNA, demonstrating that S. pedata emerged as sister to a larger clade including S. diploidea, S. platani and a few ‘S. diploidea-like’ strains. Thus, bacterial 16S rDNA was searched for in representative strains of each Sappinia species/subgroup. We found that Sappinia strains were associated to distinct species of Flavobacterium or Pedobacter (phylum Bacteroidetes). These appear to be distributed following the amoebal host subgroups, and are not directly related to other Bacteroidetes species known as interacting with free-living amoebae. While all the endosymbionts’ close relatives are known to grow on agar, bacteriological media inoculated with amoebal extracts remained negative. Overall, results indicate that the recovered bacteria are likely specific obligate endosymbionts of Sappinia species. Further studies, including additional amoebal strains and deep morphological and molecular analyses, will be necessary to confirm this hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barahona F, Slim J (2015) Sphingobacterium multivorum: case report and literature review. New Microbes New Infect 7:33–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker J, Brown MR (1994) Trojan horses of the microbial world: protozoa and the survival of bacterial pathogens in the environment. Microbiology 140:1253–1259

    Article  CAS  PubMed  Google Scholar 

  • Bernardet JF, Bowman JP (2011) Genus I. Flavobacterium Bergey et al. 1923. In: Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 4, 2nd edn. Springer, New York, pp 112–154

    Google Scholar 

  • Bernardet JF, Segers P, Vancanneyt M, Berthe F, Kersters K, Vandamme P (1996) Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (Basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 46:128–148

    Article  Google Scholar 

  • Brown MW, Spiegel FW, Silberman JD (2007) Amoeba at attention: phylogenetic affinity of Sappinia pedata. J Eukaryot Microbiol 54:511–519

    CAS  PubMed  Google Scholar 

  • Cabello-Vílchez AM, Mena R, Zuñiga J, Cermeño P, Martín-Navarro CM, González AC, López-Arencibia A, Reyes-Batlle M, Piñero JE, Valladares B, Lorenzo-Morales J (2014) Endosymbiotic Mycobacterium chelonae in a Vermamoeba vermiformis strain isolated from the nasal mucosa of an HIV patient in Lima, Peru. Exp Parasitol 145(Suppl):S127–S130

    Article  PubMed  Google Scholar 

  • Corsaro D, Venditti D (2009) Detection of Chlamydiae from freshwater environments by PCR, amoeba coculture and mixed coculture. Res Microbiol 160:547–552

    Article  CAS  PubMed  Google Scholar 

  • Corsaro D, Feroldi V, Saucedo G, Ribas F, Loret JF, Greub G (2009) Novel Chlamydiales strains isolated from a water treatment plant. Environ Microbiol 11:188–200

    Article  CAS  PubMed  Google Scholar 

  • Corsaro D, Michel R, Walochnik J, Müller K-D, Greub G (2010a) Saccamoeba lacustris, sp. nov. (Amoebozoa: Lobosea: Hartmannellidae), a new lobose amoeba, parasitized by the novel chlamydia ‘Candidatus Metachlamydia lacustris’ (Chlamydiae: Parachlamydiaceae). Eur J Protistol 46:86–95

    Article  PubMed  Google Scholar 

  • Corsaro D, Saucedo Pages G, Catalan V, Loret JF, Greub G (2010b) Biodiversity of amoebae and amoeba-associated bacteria in water treatment plants. Int J Hyg Environ Health 213:158–166

    Article  CAS  PubMed  Google Scholar 

  • Corsaro D, Müller K-D, Wingender J, Michel R (2013a) “Candidatus Mesochlamydia elodeae” (Chlamydiae: Parachlamydiaceae), a novel chlamydia parasite of free-living amoebae. Parasitol Res 112:829–838

    Article  PubMed  Google Scholar 

  • Corsaro D, Müller K-D, Michel R (2013b) Molecular characterization and ultrastructure of a new amoeba endoparasite belonging to the Stenotrophomonas maltophilia complex. Exp Parasitol 133:383–390

    Article  CAS  PubMed  Google Scholar 

  • Corsaro D, Walochnik J, Venditti D, Müller K-D, Michel R (2013c) Molecular identification of a phage-infected Protochlamydia strain naturally harboured by non-encysting Naegleria. Acta Protozool 52:273–281

    Google Scholar 

  • Corsaro D, Walochnik J, Venditti D, Müller K-D, Hauröder B, Michel R (2014) Rediscovery of Nucleophaga amoebae, a novel member of the Rozellomycota. Parasitol Res 113:4491–4498

    Article  PubMed  Google Scholar 

  • Corsaro D, Walochnik J, Köhsler M, Rott MB (2015) Acanthamoeba misidentification and multiple labels: redefining genotypes T16, T19, and T20 and proposal for Acanthamoeba micheli sp. nov. (genotype T19). Parasitol Res 114:2481–2490

    Article  PubMed  Google Scholar 

  • Corsaro D, Michel R, Walochnik J, Venditti D, Müller K-D, Hauröder B, Wylezich C (2016) Molecular identification of Nucleophaga terricolae sp. nov. (Rozellomycota), and new insights on the origin of the Microsporidia. Parasitol Res 115:3003–3011

    Article  PubMed  Google Scholar 

  • Dangeard PA (1896) Contribution à l’étude des Acrasiées. Le Botaniste 5:1–20

    Google Scholar 

  • Deepa R, Venkatesh KG, Parveen JD, Banu ST, Jayalakshmi G (2014) Myroides odoratus and Chryseobacterium indologenes: two rare isolates in the immunocompromised. Indian J Med Microbiol 32:327–330

    Article  CAS  PubMed  Google Scholar 

  • Du J, Singh H, Ngo HTT, Won KH, Kim KY, Yi TH (2015) Pedobacter daejeonensis sp. nov. and Pedobacter trunci sp. nov., isolated from an ancient tree trunk, and emended description of the genus Pedobacter. Int J Syst Evol Microbiol 65:1241–1246

    Article  CAS  PubMed  Google Scholar 

  • Evstigneeva A, Raoult D, Karpachevskiy L, La Scola B (2009) Amoeba co-culture of soil specimens recovered 33 different bacteria, including four new species and Streptococcus pneumoniae. Microbiology 155:657–664

    Article  CAS  PubMed  Google Scholar 

  • Geisen S, Fiore-Donno AM, Walochnik J, Bonkowski M (2014) Acanthamoeba everywhere: high diversity of Acanthamoeba in soils. Parasitol Res 113:3151–3158

    Article  PubMed  Google Scholar 

  • Gomaa F, Kosakyan A, Heger TJ, Corsaro D, Mitchell EAD, Lara E (2014) One alga to rule them all: unrelated mixotrophic testate amoebae (Amoebozoa, Rhizaria and Stramenopiles) share the same symbiont (Trebouxiophyceae). Protist 165:161–176

    Article  PubMed  Google Scholar 

  • Greub G, La Scola B, Raoult D (2004) Amoebae-resisting bacteria isolated from human nasal swabs by amoebal coculture. Emerg Infect Dis 10:470–477

    Article  PubMed  Google Scholar 

  • Gupta A, Logan J, Elhag N, Almond M (2016) Sphingobacterium spiritivorum infection in a patient with end stage renal disease on haemodialysis. Ann Clin Microbiol Antimicrob 15:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffmann R, Michel R (2001a) Distribution of free-living amoebae (FLA) during preparation and supply of drinking water. Int J Hyg Environ Health 203:215–219

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann R, Michel R (2001b) Hartmannella vermiformis (Gymnamoebia) isolated from tap water harboured simulteously two different bacterial endocytobionts. Endocytobios Cell Res 14:103–113

    Google Scholar 

  • Hollants J, Leliaert F, Verbruggen H, Willems A, De Clerck O (2013a) Permanent residents or temporary lodgers: characterizing intracellular bacterial communities in the siphonous green alga Bryopsis. Proc R Soc B 280:20122659

    Article  PubMed  PubMed Central  Google Scholar 

  • Hollants J, Leliaert F, Verbruggen H, De Clerck O, Willems A (2013b) Host specificity and coevolution of Flavobacteriaceae endosymbionts within the siphonous green seaweed Bryopsis. Mol Phylogenet Evol 67:608–614

    Article  PubMed  Google Scholar 

  • Hoque SN, Graham J, Kaufmann ME, Tabaqchali S (2001) Chryseobacterium (Flavobacterium) meningosepticum outbreak associated with colonization of water taps in a neonatal intensive care unit. J Hosp Infect 47:188–192

    Article  CAS  PubMed  Google Scholar 

  • Horn M, Harzenetter MD, Linner T, Schmid EN, Müller K-D, Michel R, Wagner M (2001) Members of the Cytophaga-Flavobacterium-Bacteroides Phylum as intracellular bacteria of Acanthamoebae: proposal of “Candidatus Amoebophilus asiaticus”. Environ Microbiol 3:440–449

    Article  CAS  PubMed  Google Scholar 

  • Jobb G, von Haeseler A, Strimmer K (2004) TREEFINDER: a powerful ghraphical analysis environment for molecular phylogenetics. BMC Evol Biol 4:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Kämpfer P, Vaneechoutte M, Lodders N, De Baere T, Avesani V, Janssens M, Busse HJ, Wauters G (2009) Description of Chryseobacterium anthropi sp. nov. to accommodate clinical isolates biochemically similar to Kaistella koreensis and Chryseobacterium haifense, proposal to reclassify Kaistella koreensis as Chryseobacterium koreense comb. nov. and emended description of the genus Chryseobacterium. Int J Syst Evol Microbiol 59:2421–2428

    Article  PubMed  Google Scholar 

  • Kim KK, Kim MK, Lim JH, Park HY, Lee ST (2005) Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miricola comb. nov. Int J Syst Evol Microbiol 55:1287–1293

    Article  CAS  PubMed  Google Scholar 

  • Kim JJ, Jin HM, Lee HJ, Jeon CO, Kanaya E, Koga Y, Takano K, Kanaya S (2011) Flavobacterium banpakuense sp. nov., isolated from leaf-and-branch compost. Int J Syst Evol Microbiol 61:1595–1600

    Article  CAS  PubMed  Google Scholar 

  • Kim D-U, Kim Y-J, Shin D-H, Weon H-Y, Kwon S-W, Seong C-N, Ka J-O (2013) Pedobacter namyangjuensis sp. nov. isolated from soil and reclassification of Nubsella zeaxanthinifaciens Asker et al. 2008 as Pedobacter zeaxanthinifaciens comb. nov. J Microbiol 51:25–30

    Article  PubMed  Google Scholar 

  • Liebert CA, Hood MA, Deck FH, Bishop K, Flaherty DK (1984) Isolation and characterization of a new Cytophaga species implicated in a work-related lung disease. Appl Environ Microbiol 48:936–943

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loch TP, Faisal M (2015) Emerging flavobacterial infections in fish. J Adv Res 6:283–300

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Shivaji S (2011) Genus II. Pedobacter Steyn et al. 1998. In: Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 4, 2nd edn. Springer, New York, pp 339–351

    Google Scholar 

  • Matin A, Siddiqui R, Jayasekera S, Khan NA (2008) Increasing importance of Balamuthia mandrillaris. Clin Microbiol Rev 21:435–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel R, Burghardt H, Bergmann H (1995) Acanthamoeba, naturally intracellularly infected with Pseudomonas aeruginosa, after their isolation from a microbiologically contaminated drinking water system in a hospital. Zentralbl Hyg Umweltmed 196:532–544

    CAS  PubMed  Google Scholar 

  • Michel R, Wylezich C, Hauröder B, Smirnov AV (2006) Phylogenetic position and notes on the ultrastructure of Sappinia diploidea (Thecamoebidae). Protistology 4:319–325

    CAS  Google Scholar 

  • Michel R, Hauröder B, Müller K-D (2010) Saccamoeba limax (Hartmannellidae) isolated from Elodea sp. was colonized by two strains of endocytic bacteria and a bacteriophage. Endocytobiosis Cell Res 20:38–44

    Google Scholar 

  • Michel R, Müller K-D, Schmid EN, Theegarten D, Hauröder B, Corsaro D (2012) Isolation of Thecamoeba terricola from bark of Platanus occidentalis harbouring spore-forming eukaryotic endoparasites with intranuclear development. Endocytobiosis Cell Res 22:37–42

    Google Scholar 

  • Michel R, Walochnik J, Scheid P (2014) Isolation and characterisation of various amoebophagous fungi and evaluation of their prey spectrum. Exp Parasitol 145(Suppl):S131–S136

    Article  PubMed  Google Scholar 

  • Molmeret M, Horn M, Wagner M, Santic M, Abu Kwaik Y (2005) Amoebae as training grounds for intracellular bacterial pathogens. Appl Environ Microbiol 71:20–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore LSP, Owens DS, Jepson A, Turton JF, Ashworth S, Donaldson H, Holmes AH (2016) Waterborne Elizabethkingia meningoseptica in adult critical care. Emerg Infect Dis 22:9–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller K-D, Schmid EN, Michel R (1999) Intracellular bacteria of Acanthamoebae resembling Legionella spp. turned out to be Cytophaga sp. Zent Bl Bakteriol 289:389–397

    Article  Google Scholar 

  • Page FC (1988) A new key to freshwater and soil gymnamoebae. Freshwater Biological Association, Ambleside

    Google Scholar 

  • Pagnier I, Raoult D, La Scola B (2008) Isolation and identification of amoeba-resisting bacteria from water in human environment by using an Acanthamoeba polyphaga co-culture procedure. Environ Microbiol 10:1135–1144

    Article  CAS  PubMed  Google Scholar 

  • Park M, Yun ST, Kim MS, Chun J, Ahn TI (2004) Phylogenetic characterization of Legionella-like endosymbiotic X-Bacteria in Amoeba proteus: a proposal for ‘Candidatus Legionella jeonii’ sp. nov. Environ Microbiol 6:1252–1263

    Article  CAS  PubMed  Google Scholar 

  • Qvarnstrom Y, da Silva AJ, Schuster FL, Gelman BB, Visvesvara GS (2009) Molecular confirmation of Sappinia pedata as a causative agent of amoebic encephalitis. J Infect Dis 199:1139–1142

    Article  CAS  PubMed  Google Scholar 

  • Risler A, Coupat-Goutaland B, Pélandakis (2013) Genotyping and phylogenetic analysis of Acanthamoeba isolates associated with keratitis. Parasitol Res 112:3807–3816

    Article  PubMed  Google Scholar 

  • Rodríguez-Zaragoza S (1994) Ecology of free-living amoebae. Crit Rev Microbiol 20:225–241

    Article  PubMed  Google Scholar 

  • Rowbotham TJ (1980) Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J Clin Pathol 33:1179–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui R, Khan NA (2012) Biology and pathogenesis of Acanthamoeba. Parasit Vectors 5:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Steenbergen JN, Shuman HA, Casadevall A (2001) Cryptococcus neoformans interactions with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy in macrophages. Proc Natl Acad Sci U S A 98:15245–15250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steyn PL, Segers P, Vancanneyt M, Sandra P, Kersters K, Joubert JJ (1998) Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. Proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 48:165–177

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas V, Loret JF, Jousset M, Greub G (2008) Biodiversity of amoebae and amoebae-resisting bacteria in a drinking water treatment plant. Environ Microbiol 10:2728–2745

    Article  CAS  PubMed  Google Scholar 

  • Trabelsi H, Dendana F, Sellami A, Sellami H, Cheikhrouhou F, Neji S, Makni F, Ayadi A (2012) Pathogenic free-living amoebae: epidemiology and clinical review. Pathol Biol 60:399–405

    Article  CAS  PubMed  Google Scholar 

  • Visvesvara GS, Moura H, Schuster FL (2007) Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol Med Microbiol 50:1–26

    Article  CAS  PubMed  Google Scholar 

  • Wylezich C, Walochnik J, Michel R (2009) High genetic diversity of Sappinia-like strains (Amoebozoa, Thecamoebidae) revealed by SSU rRNA investigations. Parasitol Res 105:869–873

    Article  PubMed  Google Scholar 

  • Wylezich C, Walochnik J, Corsaro D, Michel R, Kudryavtsev A (2015) Electron microscopical investigations of a new species of the genus Sappinia (Thecamoebidae, Amoebozoa), Sappinia platani nov. sp., reveal a dictyosome for the first time in this genus. Acta Protozool 54:45–51

    CAS  Google Scholar 

  • Xuan Y-H, Yu HS, Jeong HJ, Seol S-Y, Chung D-I, Kong H-H (2007) Molecular characterization of bacterial endosymbionts of Acanthamoeba isolates from infected corneas of Korean patients. Korean J Parasitol 45:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamora L, Vela AI, Sánchez-Porro C, Palacios MA, Moore ERB, Domínguez L, Ventosa A, Fernández-Garayzábal JF (2014) Flavobacterium tructae sp. nov. and Flavobacterium piscis sp. nov., isolated from farmed rainbow trout (Oncorhynchus mykiss). Int J Syst Evol Microbiol 64:392–399

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Corsaro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corsaro, D., Wylezich, C., Walochnik, J. et al. Molecular identification of bacterial endosymbionts of Sappinia strains. Parasitol Res 116, 549–558 (2017). https://doi.org/10.1007/s00436-016-5319-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-016-5319-4

Keywords

Navigation