Skip to main content
Log in

Organ-specific testosterone-insensitive response of miRNA expression of C57BL/6 mice to Plasmodium chabaudi malaria

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Increasing evidence critically implicates miRNAs in the pathogenesis of diseases, but little is known in context with infectious diseases. This study investigates as to whether the testosterone-induced persistent susceptibility to blood-stage malaria of Plasmodium chabaudi coincides with changes in miRNA expression of the anti-malaria effectors sites spleen and liver. Female C57BL/6 mice were treated with vehicle or testosterone (T) for 3 weeks. Then, T treatment was discontinued for 12 weeks before challenge with 106 P. chabaudi-parasitized erythrocytes. The miRNA expression was examined after 12 weeks of T withdrawal and during infections at peak parasitemia on day 8 p.i. using miRXplore™ microarray technology. P. chabaudi infections induce an organ-specific response of miRNA expression. We can identify 25 miRNA species to be downregulated by more than 2-fold in the spleen and 169 miRNA species in the liver. Among these 194 miRNA species, there are 12 common miRNA species that are downregulated by 0.48–0.14-fold in both spleen and liver, which are miR-194, miR-192, miR-193A-3P, miR-145, miR-16, miR-99A, miR-99B, miR-15A, miR-152, let-7G, let-7B, and miR-455-3P. Only in the liver, there is an upregulation of the miR-142-5p by 2.5-fold and miR-342-3p by 5.1-fold. After 12 weeks of T withdrawal, the spleen exhibits only the miR-200A that is upregulated by 2.7-fold. In the liver, miR-376B, miR-493*, and miR-188-3P are upregulated by 2.4-fold, 2.2-fold, and 2.1-fold, respectively, and miR-347, miR-200A, and miR-200B are downregulated by approximately 0.4-fold. Upon infection, however, these changes are not sustained, i.e., the miRNA expressions of both spleen and liver of T-pretreated mice exhibit the same response to P. chabaudi malaria as that of vehicle-treated control mice. Our data suggest (1) that the P. chabaudi-induced downregulation of miRNA expression in spleen and liver is required to allow the upregulation of their numerous target genes in response to infection, and (2) that the T-induced persistent susceptibility to P. chabaudi does not affect the responsiveness of miRNA expression in spleen and liver to blood-stage malaria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Quarishy S, Delic D, Sies H, Wunderlich F, Abdel-Baki AA, Dkhil MA (2011) Differential miRNA expression in the mouse jejunum during garlic treatment of Eimeria papillata. Parasitol Res 109:387–394

    Article  Google Scholar 

  • Baltimore D, Boldin MP, O’Connell RM, Rao DS, Taganov KD (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9:839–845

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Benten WP, Bettenhaeuser U, Wunderlich F, Van Vliet E, Mossmann H (1991) Testosterone-induced abrogation of self-healing of Plasmodium chabaudi malaria in B10 mice: mediation by spleen cells. Infect Immun 59:4486–4490

    PubMed  CAS  Google Scholar 

  • Benten WP, Ulrich P, Kühn-Velten WN, Vohr HW, Wunderlich F (1997) Testosterone induced susceptibility to Plasmodium chabaudi malaria: persistence after withdrawal of testosterone. J Endocrinol 153:275–281

    Article  PubMed  CAS  Google Scholar 

  • Bi Y, Liu G, Yang R (2009) MicroRNAs: novel regulators during the immune response. J Cell Physiol 218:467–472

    Article  PubMed  CAS  Google Scholar 

  • Bilzer M, Roggel F, Gerbes AL (2006) Role of Kupffer cells in host defense and liver disease. Liver Int 26:1175–1186

    Article  PubMed  CAS  Google Scholar 

  • Bissels U, Wild S, Tomiuk S, Holste A, Hafner M, Tuschl T, Bosio A (2009) Absolute quantification of microRNAs by using a universal reference. RNA 12:2375–2384

    Article  Google Scholar 

  • Bosman GJ, Willekens FL, Werre JM (2005) Erythrocyte aging: a more than superficial resemblance to apoptosis? Cell Physiol Biochem 16:1–8

    Article  PubMed  CAS  Google Scholar 

  • Chotivanich K, Udomsangpetch R, McGready R, Proux S, Newton P, Pukrittayakamee S, Looareesuwan S, White NJ (2002) Central role of the spleen in malaria parasite clearance. J Infect Dis 185:1538–1541

    Article  PubMed  Google Scholar 

  • Crispe IN (2009) The liver as a lymphoid organ. Annu Rev Immunol 27:147–163

    Article  PubMed  CAS  Google Scholar 

  • Davidson-Moncada J, Papavasiliou FN, Tam W (2010) MicroRNAs of the immune system: roles in inflammation and cancer. Ann NY Acad Sci 1183:183–194

    Article  PubMed  CAS  Google Scholar 

  • Delić D, Gailus N, Vohr HW, Dkhil MA, Al-Quraishy S, Wunderlich F (2010a) Testosterone-induced permanent changes of hepatic gene expression sustained during Plasmodium chabaudi malaria. J Mol Endocrinol 45:379–390

    Article  PubMed  Google Scholar 

  • Delić D, Grosser C, Dkhil MA, Al-Quraishy S, Wunderlich F (2010b) Testosterone-induced upregulation of miRNAs in the female mouse liver. Steroids 75:988–1004

    Article  Google Scholar 

  • Delic D, Warskulat U, Borsch E, Al-Qahtani S, Al-Quraishi S, Häussinger D, Wunderlich F (2010) Loss of ability to self-heal malaria upon taurine transporter deletion. Infect Immun 78:1642–1649

    Article  PubMed  CAS  Google Scholar 

  • Delić D, Dkhil MA, Al-Quraishy S, Wunderlich F (2011) Hepatic miRNA expression reprogrammed by Plasmodium chabaudi malaria. Parasitol Res 108:1111–1121

    Article  PubMed  Google Scholar 

  • Garcia LS (2010) Malaria. Clin Lab Med 30:93–129

    Article  PubMed  Google Scholar 

  • Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  PubMed  CAS  Google Scholar 

  • Haeussinger D, Kubitz R, Reinehr R, Bode JG, Schliess F (2004) Molecular aspects of medicine: from experirnental to clinical hepatology. Mol Aspects Med 25:221–360

    Article  CAS  Google Scholar 

  • Hafalla JC, Silvie O, Matuschewski K (2011) Cell biology and immunology of malaria. Immunol Rev 240:297–316

    Article  PubMed  CAS  Google Scholar 

  • Harder A, Danneschewski A, Wunderlich F (1994) Genes of the mouse H-2 complex control the efficacy of testosterone to suppress immunity against the intestinal nematode Heterakis spumosa. Parasitol Res 80:446–448

    Article  PubMed  CAS  Google Scholar 

  • Kamis AB, Ahmad RA, Badrul-Munir MZ (1992) Worm burden and leukocyte response in Angiostrongylus malaysiensis-infected rats: the influence of testosterone. Parasitol Res 78:388–391

    Article  PubMed  CAS  Google Scholar 

  • Krücken J, Dkhil MA, Braun JV, Schroetel RM, El-Khadragy M, Carmeliet P, Mossmann H, Wunderlich F (2005) Testosterone suppresses protective response of the liver to blood-stage malaria. Infect Immun 73:436–443

    Article  PubMed  Google Scholar 

  • Krücken J, Delić D, Pauen H, Wojtalla A, El-Khadragy M, Dkhil MA, Mossmann H, Wunderlich F (2009) Augmented particle trapping and attenuated inflammation in the liver by protective vaccination against Plasmodium chabaudi malaria. Malar J 8:54

    Article  PubMed  Google Scholar 

  • Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foà R, Schliwka J, Fuchs U, Novosel A, Müller RU, Schermer B, BisselsU IJ, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 7:1401–1414

    Article  Google Scholar 

  • Li S, Moffett HF, Lu J, Werner L, Zhang H, Ritz J, Neuberg D, Wucherpfennig KW, Brown JR, Novina CD (2011) MicroRNA expression profiling identifies activated B cell status in chronic lymphocytic leukemia cells. PLoS One 6:e16956

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Wang L, Zhao Y, Wang Y, Wang Z, Qiao Z (2006) Testosterone attenuates p38 MAPK pathway during Leishmania donovani infection of macrophages. Parasitol Res 99:189–193

    Article  PubMed  Google Scholar 

  • Liu Q, Tuo W, Gao H, Zhu XQ (2010) MicroRNAs of parasites: current status and future perspectives. Parasitol Res 107:501–507

    Article  PubMed  Google Scholar 

  • Mackinnon MJ, Read AF (2003) The effects of host immunity on virulence-transmissibility relationships in the rodent malaria parasite Plasmodium chabaudi. Parasitology 126:103–112

    Article  PubMed  CAS  Google Scholar 

  • Mannoor MK, Weerasinghe A, Halder RC, Reza S, Morshed M, Ariyasinghe A, Watanabe H, Sekikawa H, Abo T (2001) Resistance to malarial infection is achieved by the cooperation of NK1.1(+) and NK1.1(−) subsets of intermediate TCR cells which are constituents of innate immunity. Cell Immunol 211:96–104

    Article  PubMed  CAS  Google Scholar 

  • Mannoor MK, Halder RC, Morshed SR, Ariyasinghe A, Bakir HY, Kawamura H, Watanabe H, Sekikawa H, Abo T (2002) Essential role of extrathymic T cells in protection against malaria. J Immunol 169:301–306

    PubMed  CAS  Google Scholar 

  • Mehlhorn H (ed) (2008) Encyclopedic reference of parasitology, vol 1, 3rd edn. Springer, Berlin

    Google Scholar 

  • Murthi P, Kalionis B, Ghabrial H, Dunlop ME, Smallwood RA, Sewell RB (2006) Kupffer cell function during the erythocytic stage of malaria. J Gastroenterol Hepatol 21:313–318

    Article  PubMed  CAS  Google Scholar 

  • Nobes MS, Ghabrial H, Simms KM, Smallwood RB, Morgan DJ, Sewell RB (2002) Hepatic Kupffer cell phagocytotic function in rats with erythrocytic-stage malaria. J Gastroenterol Hepatol 17:598–605

    Article  PubMed  Google Scholar 

  • Novak M, Myal Y, Evans WS (1981) Testosterone propionate and the growth of Hymenolepis microstoma in intact and orichiectomized mice. Parasitol Res 66:113–115

    CAS  Google Scholar 

  • Pawlicki JM, Steitz JA (2010) Nuclear networking fashions pre-messenger RNA and primary microRNA transcripts for function. Trends Cell Biol 20:52–61

    Article  PubMed  CAS  Google Scholar 

  • Roberts CW, Walker W, Alexander J (2001) Sex-associated hormones and immunity to protozoan parasites. Clin Microbiol Rev 14:476–488

    Article  PubMed  CAS  Google Scholar 

  • Ronchetti D, Lionetti M, Mosca L, Agnelli L, Andronache A, Fabris S, Deliliers GL, Neri A (2008) An integrative genomic approach reveals coordinated expression of intronic miR-335, miR-342, and miR-561 with deregulated host genes in multiple myeloma. BMC Med Genomics 13:37–45

    Article  Google Scholar 

  • Ruvkun G (2008) The perfect storm of tiny RNAs. Nat Med 10:1041–1045

    Article  Google Scholar 

  • Salaun B, Yamamoto T, Badran B, Tsunetsugu-Yokota Y, Roux A, Baitsch L, Rouas R, Fayyad-Kazan H, Baumgaertner P, Devevre E, Ramesh A, Braun M, Speiser D, Autran B, Martiat P, Appay V, Romero P (2011) Differentiation associated regulation of microRNA expression in vivo in human CD8+ T cell subsets. J Transl Med 9:44

    Article  PubMed  CAS  Google Scholar 

  • Sayed D, Abdellatif M (2011) MicroRNAs in development and disease. Physiol Rev 91:827–887

    Article  PubMed  CAS  Google Scholar 

  • Schaefer JS, Montufar-Solis D, Vigneswaran N, Klein JR (2011) Selective upregulation of microRNA expression in peripheral blood leukocytes in IL-10−/− mice precedes expression in the colon. J Immunol 187(11):5834–5841

    Article  PubMed  CAS  Google Scholar 

  • Stephens R, Culleton RL, Lamb TJ (2012) The contribution of Plasmodium chabaudi to our understanding of malaria. Trends Parasitol 28:73–82

    Article  PubMed  Google Scholar 

  • Tablin, F. et al. (2002) The microanatomy of the mammalian spleen: mechanisms of splenic clearance in the complete spleen. (Bowdler, A.J., ed.), pp. 11–22, Humana Press

  • Van der Auwera I, Limame R, van Dam P, Vermeulen PB, Dirix LY, Van Laere SJ (2010) Integrated miRNA and mRNA expression profiling of the inflammatory breast cancer subtype. Br J Cancer 103(4):532–541

    Article  PubMed  Google Scholar 

  • Watanabe K, Hamano S, Noda K, Koga M, Tada I (1999) Strongyloides ratti: additive effect of testosterone implantation and carbon injection on the susceptibility of female mice. Parasitol Res 85:522–526

    Article  PubMed  CAS  Google Scholar 

  • WHO (2010) World malaria report. World health organization, Geneva

    Google Scholar 

  • Wu H, Neilson JR, Kumar P, Manocha M, Shankar P, Sharp PA, Manjunath N (2007) miRNA profiling of naïve, effector and memory CD8 T cells. PLoS One 2(10):e1020

    Article  PubMed  Google Scholar 

  • Wu L, Zhou H, Lin H, Qi J, Zhu C, Gao Z, Wang H (2012) Circulating microRNAs are elevated in plasma from severe pre-eclamptic pregnancies. Reproduction 143(3):389–397

    Article  PubMed  CAS  Google Scholar 

  • Wunderlich F, Stübig H, Königk E (1982) Development of Plasmodium chabaudi in mice red blood cells: Structural properties of the host and parasites membranes. J Protozool 29:60–66

    PubMed  CAS  Google Scholar 

  • Wunderlich F, Mossmann H, Helwig M, Schillinger G (1988) Resistance to Plasmodium chabaudi in B10 mice: influence of the H-2 complex and testosterone. Infect Immun 56:2400–2406

    PubMed  CAS  Google Scholar 

  • Wunderlich F, Marinovski P, Benten WP, Schmitt-Wrede HP, Mossmann H (1991) Testosterone and other gonadal factor(s) restrict the efficacy of genes controlling resistance to Plasmodium chabaudi malaria. Parasite Immunol 13:357–367

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Zhao J, Wang P, Qiao Z (2001) Effect of testosterone on Leishmania donovani infection of macrophages. Parasitol Res 87:674–676

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to Dr. Rueberg (Miltenyi, Bergisch-Gladbach, Germany) for help with the microarray hybridizations. This research was supported by King Saud University, National Program for Science and Technology, through a grant no. (10-BIO1212-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saleh Al-Quraishy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Expression levels of hepatic miRNA species of unknown functions downregulated by P. chabaudi malaria. Green color represents downregulation as indicated in the logarithmic color scale bar shown in Fig. 2 (JPEG 458 kb)

High resolution image (TIFF 550 kb)

Table S1

Liver-specific deregulation of miRNA expression of unknown function induced by P. chabaudi malaria in vehicle-treated control mice (XLSX 16 kb)

Table S2

MicroRNA expression of spleen and liver of T-pretreated and vehicle-treated mice during P. chabaudi malaria on day 8 p.i. (XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Quraishy, S., Dkhil, M.A., Delic, D. et al. Organ-specific testosterone-insensitive response of miRNA expression of C57BL/6 mice to Plasmodium chabaudi malaria. Parasitol Res 111, 1093–1101 (2012). https://doi.org/10.1007/s00436-012-2937-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-012-2937-3

Keywords

Navigation