Skip to main content

Advertisement

Log in

Molecular identification of Echinococcus species from eastern and southern Qinghai, China, based on the mitochondrial cox1 gene

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The Qinghai–Tibetan Plateau (QTP, in western China), which is the largest and highest plateau on Earth, is a highly epidemic region for Echinococcus spp. We collected 70 Echinococcus samples from humans, dogs, sheep, yaks, plateau pikas, and voles in eastern and southern Qinghai and genotyped them using the mitochondrial DNA marker cytochrome oxidase subunit I gene and maximum parsimony and Bayesian reconstruction methods. Based on the 792-bp sequence matrix, we recorded 124 variable sites, of which, 115 were parsimony-informative. Thirty-four haplotypes (H1–H34) were detected, of which H1–H15, H16–H17, and H18–H34 belonged to Echinococcus shiquicus, Echinococcus multilocularis, and Echinococcus granulosus, respectively. Within 26 human isolates, three were identified as E. multilocularis and 23 were E. granulosus. We also detected a dual infection case in a dog with E. multilocularis and E. granulosus. The intraspecific haplotype (Hd ± SD) and nucleotide (Nd ± SD) diversity of E. shiquicus (0.947 ± 0.021; 0.00441 ± 0.00062) was higher than that for E. granulosus (0.896 ± 0.038; 0.00221 ± 0.00031) and E. multilocularis (0.286 ± 0.196; 0.00036 ± 0.00025). Moreover, the haplotype network of E. shiquicus showed a radial feature rather than a divergent feature in a previous study, indicating this species in the QTP has also evolved with bottleneck effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Badaraco JL, Ayala FJ, Bart JM, Gottstein B, Haag KL (2008) Using mitochondrial and nuclear markers to evaluate the degree of genetic cohesion among Echinococcus populations. Exp Parasitol 119:453–459

    Article  PubMed  CAS  Google Scholar 

  • Bart JM, Bart JM, Abdukader M, Zhang YL, Lin RY, Wang YH, Nakao M, Ito A, Craig PS, Piarroux R, Vuitton DA, Wen H (2006) Genotyping of human cystic echinococcosis in Xinjiang, PR China. Parasitology 133:571–579

    Article  PubMed  CAS  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  PubMed  CAS  Google Scholar 

  • Craig PS (2006) Epidemiology of human alveolar echinococcosis in China. Parasitol Int 55:S221–S225

    Article  PubMed  Google Scholar 

  • Craig P, Budke CM, Schantz PM, Li T, Qiu J, Yang Y, Zeyhle E, Rogan MT, Ito A (2007) Human echinococcosis: a neglected disease? Trop Med Health 35:283–292

    Article  Google Scholar 

  • Eckert J, Gemmel MA, Meslin F-X, Pawlowski ZS (eds) (2001) WHO/OIE manual on echinococcosiss in humans and animals: a public health problem of global concern. Genevan, Paris

  • Gan W, Zhao G, Xu H, Wu W, Du W, Huang J, Yu X, Hu X (2010) Reverse vaccinology approach identify an Echinococcus granulosus tegumental membrane protein enolase as vaccine candidate. Parasitol Res 106:873–882

    Article  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Hüttner M, Nakao M, Wassermann T, Siefert L, Boomker JD, Dinkel A, Sako Y, Mackenstedt U, Romig T, Ito A (2008) Genetic characterization and phylogenetic position of Echinococcus felidis Ortlepp, 1937 (Cestoda: Taeniidae) from the African lion. Int J Parasitol 38:861–868

    Article  PubMed  Google Scholar 

  • Li T, Ito A, Nakaya K, Qiu J, Nakao M, Zhen R, Xiao N, Chen X, Giraudoux P, Craig PS (2008) Species identification of human echinococcosis using histopathology and genotyping in northwestern China. Trans Roy Soc Trop Med Hyg 102:585–590

    Article  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Yang TN (1994) Case report: double types hydatid in one human. Agr Reclam Med 16:135–136

    Google Scholar 

  • Ma SM, Maillard S, Zhao HL, Huang X, Wang H, Geng PL, Bart JM, Piarroux R (2008) Assessment of Echinococcus granulosus polymorphism in Qinghai Province, People’s Republic of China. Parasitol Res 102:1201–1206

    Article  PubMed  CAS  Google Scholar 

  • Maggiore MA, Albanese AA, Gende LB, Eguaras MJ, Denegri GM, Elissondo MC (2011) Anthelmintic effect of Mentha spp. essential oils on Echinococcus granulosus protoscoleces and metacestodes. Parasitol Res. doi:10.1007/s00436-011-2595-x

  • Moro P, Schantz PM (2009) Echinococcosis: a review. Int J Infect Dis 13:125–133

    Article  PubMed  CAS  Google Scholar 

  • Nakao M, Sako Y, Yokoyama N, Fukunaga M, Ito A (2000) Mitochondrial genetic code in cestodes. Mol Biochem Parasitol 111:415–424

    Article  PubMed  CAS  Google Scholar 

  • Nakao M, Sako Y, Ito A (2003) Isolation of polymorphic microsatellite loci from the tapeworm Echinococcus multilocularis. Infect Genet Evol 3:159–163

    Article  PubMed  CAS  Google Scholar 

  • Nakao M, McManus DP, Schantz PM, Craig PS, Ito A (2007) A molecular phylogeny of the genus Echinococcus inferred from complete mitochondrial genomes. Parasitology 134:713–722

    Article  PubMed  CAS  Google Scholar 

  • Nakao M, Li T, Han X, Ma X, Xiao N, Qiu J, Wang H, Yanagida T, Mamuti W, Wen H, Moro PL, Giraudoux P, Craig PS, Ito A (2010) Genetic polymorphisms of Echinococcus tapeworms in China as determined by mitochondrial and nuclear DNA sequences. Int J Parasitol 40(3):379–385

    Article  PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14(9):817–818

    Article  PubMed  CAS  Google Scholar 

  • Pour AA, Hosseini SH, Shayan P (2011) Comparative genotyping of Echinococcus granulosus infecting buffalo in Iran using cox1 gene. Parasitol Res 108:1229–1234

    Article  PubMed  Google Scholar 

  • Qiu JM, Liu FJ, Wang H, Ito A, Schantz PM (1999) A survey of hydatid disease (echinococcosis) in Tibetan population in China: correlation of ultrasound and radiologic imaging and serologic results. Arch Int Hidatidosis 33:211–213

    Google Scholar 

  • Sharbatkhori M, Harandi MF, Mirhendi H, Hajialilo E, Kia EB (2011) Sequence analysis of cox1 and nad1 genes in Echinococcus granulosus G3 genotype in camels (Camelus dromedarius) from central Iran. Parasitol Res 108:521–527

    Article  PubMed  Google Scholar 

  • Sikó SB, Deplazes P, Ceica C, Tivadar CS, Bogolin I, Popescu S, Cozma V (2011) Echinococcus multilocularis in south-eastern Europe (Romania). Parasitol Res 108:1093–1097

    Article  PubMed  Google Scholar 

  • Smith AT, Foggin JM (1999) The plateau pika (Ochotona curzoniae) is a keystone species for biodiversity on the Tibetan plateau. Anim Conserv 2:235–240

    Article  Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analyses using parsimony (*and other methods). Version 4. Sinauer, Sunderland

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acid Res 25:4876–4882

    Article  CAS  Google Scholar 

  • Wen H, Zhang YL, Bart JM, Giraudoux P, Vuitton DA, Ma XD, Zou LY, Miao YQ, Craig PS (2006) Mixed infection of Echinococcus granulosus and Echinococcus multilocularis in dog. Chin J Parasitol Parasitic Dis 24(1):10–13

    Google Scholar 

  • Wu T (2001) The Qinghai-Tibetan plateau: how high do Tibetans live? High Alt Med Biol 2:489–499

    Article  PubMed  CAS  Google Scholar 

  • Xiao N, Qiu J, Nakao M, Li T, Yang W, Chen X, Schantz PM, Craig PS, Ito A (2005) Echinococcus shiquicus n. sp., a taeniid cestode from Tibetan fox and plateau pika in China. Int J Parasitol 35:693–701

    Article  PubMed  CAS  Google Scholar 

  • Xiao N, Nakao M, Qiu J, Budke CM, Giraudoux P, Craig PS, Ito A (2006a) Short report: dual infection of animal hosts with different Echinococcus species in the eastern Qinghai-Tibet Plateau Region of China. Amer J Trop Med Hyg 75(2):292–294

    CAS  Google Scholar 

  • Xiao N, Qiu J, Nakao M, Li T, Yang W, Chen X, Schantz PM, Craig PS, Ito A (2006b) Echinococcus shiquicus, a new species from the Qinghai-Tibet Plateau Region of China: discovery and epidemiological implications. Parasitol Int 55:S233–S236

    Article  PubMed  Google Scholar 

  • Yang YR, Rosenzvit MC, Zhang LH, Zhang JZ, McManus DP (2005) Molecular study of Echinococcus in west-central China. Parasitology 131:547–555

    Article  PubMed  CAS  Google Scholar 

  • Zeng C (2006) Epidemic situation of echinococcosis in southern plateau regions of Qinghai Province. Chin J Endemiol 25(5):583–584

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Science and Technology Plan of Qinghai Province (2010-Z-742), the General Programs of the National Natural Science Foundation of China (no. 31101628), the West Light Foundation of The Chinese Academy of Sciences to G. Lin (2011–2013), and the Asia/Africa Scientific Platform Fund from the Japan Society for the Promotion of Science to A. Ito (2006–2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonghua Lin.

Additional information

Junying Ma, Hu Wang, Philip S. Craig, and Akira Ito contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, J., Wang, H., Lin, G. et al. Molecular identification of Echinococcus species from eastern and southern Qinghai, China, based on the mitochondrial cox1 gene. Parasitol Res 111, 179–184 (2012). https://doi.org/10.1007/s00436-012-2815-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-012-2815-z

Keywords

Navigation