Skip to main content
Log in

Acrolichanus auriculatus (Digenea, Allocreadiidae): distribution of sensory papillae, musculature and FMRFamide-like immunoreactivity in adult worms

  • Research
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

The muscle system and the FMRFamide immunopositive components of the nervous system of flatworms Acrolichanus auriculatus (Digenea, Allocreadiidae), an intestine parasite of acipenserid fishes, were studied for the first time by immunocytochemical, histochemical methods and confocal laser scanning microscopy. Scanning electron microscopy in A. auriculatus revealed a consistent pattern in the number and arrangement of ciliated and unciliated sensory papillae along the digenean body. Morphological data demonstrated the presence of the circular, longitudinal and diagonal muscles in different body regions of A. auriculatus. The musculature of the oral and ventral suckers, the digestive system, as well as the muscles extending radially from the genital pore are described. The study revealed the presence of the FMRFamide immunopositive staining in the central and peripheral nervous systems of A. auriculatus: in the neurons and neurites of the brain, brain commissure, in three pairs of the longitudinal nerve cords and commissures. FMRFamide immunopositive nerve elements innervate the attachment organs and the compartments of the digestive, reproductive and excretory systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data presented in this study can be available upon personal request to the corresponding authors.

References

  • Atopkin DM, Sokolov SG, Vainutis KS, Voropaeva EL, Shedko MB, Choudhury A (2020) Amended diagnosis, validity and relationships of the genus Acrolichanus Ward, 1917 (Digenea: Allocreadiidae) based on the 28S rRNA gene, and observations on its lineage diversity. Syst Parasitol 97(2):1–14. https://doi.org/10.1007/s11230-020-09901-z

    Article  Google Scholar 

  • Borges JN, Costa VS, Mantovan C, Barros EG, Santos N, Mafra CL, Santos CP (2017) Molecular characterization and confocal laser scanning microscopic study of Pygidiopsis macrostomum (Trematoda: Heterophyidae) parasites of guppies Poecilia vivipara. J Fish Dis 40(2):191–203. https://doi.org/10.1111/jfd.12504

  • Bulantova J, Chanova M, Houžvičkova L, Horak P (2011) Trichobilharzia regenti (Digenea: Schistosomatidae): changes of body wall musculature during the development from miracidium to adult worm. Micron 42:47–54

    Article  PubMed  Google Scholar 

  • Caira JN (1989) A revision of the North American papillose Allocreadiidae (Digenea) with independent cladistic analyses of larval and adult forms. Bull Univ Nebraska State Museum 11:1–58. https://digitalcomons.unl.edu/museumbulletin

  • Choudhury A, Nelson PA (2000) Redescription of Crepidostomum opeongoensis Caira, 1985 (Trematoda: Allocreadiidae) from fish hosts Hiodon alasoides and Hiodon tergisus (Osteichthyes: Hiodonidae). J Parasitol 86:1305–1312

    Article  CAS  PubMed  Google Scholar 

  • Choudhury A, Dick TA (2001) Sturgeons and their parasites: patterns and processes in historical biogeography. J Biogeogr 28:1411–1439

    Article  Google Scholar 

  • Collins JJ, Hou X, Romanova EV, Lambrus BG, Miller CM et al (2010) Genome-wide analyses reveal a role for peptide hormones in planarian germline development. PLoS Biol 8:e1000509

    Article  PubMed  PubMed Central  Google Scholar 

  • D’ávila S, Manso PPA, Bessa ECA, Rodrigues MLA, Dias RJP (2010) Gross anatomy of themusculature and a new description of the reproductive system of Tanaisia bragai and Tanaisia inopina (Trematoda: Eucotylidae) analysed by confocal laser scanning microscopy. Acta Zool (Stockholm) 91:139–149

    Article  Google Scholar 

  • Gao D, Wang GT, Xi BW, Yao WJ, Nie P (2008) A new species of Allocreadium (Trematoda: Allocreadiidae) from freshwater fishes in the Danjiangkou reservoir in China. J Parasitol 94:176–180

    Article  PubMed  Google Scholar 

  • Graham MK, Fairweather I, McGeown JG (1997) The effects of FaRPs on the motility of isolated muscle strips from the liver fuke, Fasciola hepatica. Parasitology 114(Pt 5):455–465

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson MKS (1987) Immunocytochemical demonstration of neuropeptides and serotonin in the nervous system of adult Schistosoma mansoni. Parasitol Res 74(2):168–174

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson MKS, Halton DW, Kreshchenko ND, Movsessian SO, Raikova OI, Reuter M, Terenina NB (2002) Neuropeptides in flatworms. Peptides 23:2053–2061

    Article  CAS  PubMed  Google Scholar 

  • Halton DW, Maule AG (2004) Flatworm nerve-muscle: structural and functional analysis. Can Zool 82:316–333. https://doi.org/10.1139/z03-221

    Article  Google Scholar 

  • Hernández-Mena DI, Lynggaard C, Mendoza-Garfias B, Pérez-Ponce de León G (2016) A new species of Auriculostoma (Trematoda:Allocreadiidae) from intestine of Brycon guatemalensis (Characiformes: Bryconidae) from the Usumacinta River Basin, Mexico, based on morphology and 28S rDNA sequences, with a key to species of the genus. Zootaxa 4196 (2):261–277. http://www.mapress.com/j/zt/

  • Kotikova EA (1969) Cholinesterase of trematodes and some peculiarities of the structure of their nervous system. Parazitologia 3(6):532–537 ([in Russian])

    CAS  Google Scholar 

  • Koziol U, Koziol M, Preza M, Costabile A, Brehm K, Castillo E (2016) De novo discovery of neuropeptides in the genomes of parasitic flatworms using a novel comparative approach. Int J Parasitol 46:709–721

    Article  CAS  PubMed  Google Scholar 

  • Kreshchenko N, Terenina N, Nefedova D, Mochalova N, Voropaeva E, Movsesyan S (2020) The neuroactive substances and associated muscle system in Rhipidocotyle campanula (Digenea, Bucephalidae) from the intestine of the pike Esox lucius. J Morphol 281:1047–1058

    Article  CAS  PubMed  Google Scholar 

  • Kreshchenko N, Terenina N, Mochalova N, Movsesyan S (2022) Neuromuscular system of the causative agent of dicrocoeliosis, Dicrocoelium lanceatum. II. Neuropeptide FMRFamide immunoreactivity in nervous system. Zoology 155:126054. https://doi.org/10.1016/j.zool.2022.126054

  • Krupenko DY (2014) Muscle system of Diplodiscus subclavatus (Trematoda: Paramphistomida) cercariae, pre-ovigerous, and ovigerous adults. Parasitol Res 113:941–952. https://doi.org/10.1007/s00436-013-3726-3

    Article  PubMed  Google Scholar 

  • Krupenko DY (2019) Oral sucker in Digenea: structure and muscular arrangement. Zoomorphology 138:29–37. https://doi.org/10.1007/s00435-018-0423-x

    Article  Google Scholar 

  • Krupenko D, Dobrovolskij AA (2015) Somatic musculature in trematode hermaphroditic generation. BMC Evol Biol 15:189. https://doi.org/10.1186/s12862-015-0468-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krupenko D, Dobrovolskij AA (2018) Morphological framework for attachment and locomotion in several Digenea of the families Microphallidae and Heterophyidae. Parasitol Res 117:3799–3807. https://doi.org/10.1007/s00436-018-6085-2

    Article  PubMed  Google Scholar 

  • Liquin F, Gilardoni C, Cremonte F, Saravia J, Cristóbal HA, Davies D (2022) A new species of Auriculostoma (Digenea: Allocreadiidae) in South America: life cycle and phylogenetic relationships. An Acad Bras Ciens 94(1):e20200538. https://doi.org/10.1590/0001-3765202220200538

    Article  CAS  Google Scholar 

  • Magee RM, Fairweather I, Johnston CF, Halton DW, Shaw C (1989) Immunocytochemical demonstration of neuropeptides in the nervous system of the liver fluke, Fasciola hepatica (Trematoda, Digenea). Parasitology 98(2):227–238. https://doi.org/10.1017/S0031182000062132

    Article  CAS  PubMed  Google Scholar 

  • Mair GR, Maule GR, Shaw C, Halton DW (1998) Muscling in on parasitic flatworms. Parasitol Today 14:73–76. https://doi.org/10.1016/s0169-4758(97)01182-4

    Article  CAS  PubMed  Google Scholar 

  • Mair GR, Maule AG, Day TA, Halton DW (2000) A confocal microscopical study of the musculature of adult Schistosoma mansoni. Parasitology 121:163–170

    Article  PubMed  Google Scholar 

  • Mair GR, Halton DW, Maule AG (2020) The neuromuscular system of the sheep tapeworm Moniezia expansa. Invert Neurosc 20(4):17. https://doi.org/10.1007/s10158-020-00246-2

    Article  CAS  Google Scholar 

  • Marks NJ, Halton DW, Maule AG, Brennan GP, Shaw C, Southgate VR, Johnston CF (1995) Comparative analyses of the neuropeptide F (NPF)- and FMRFamide-related peptide (FaRP)- immunoreactivities in Fasciola hepatica and Schistosoma spp. Parasitology 110:371–378

    Article  CAS  PubMed  Google Scholar 

  • McKay DM, Halton DW, Johnston CF, Fairweather J, Shaw C (1990) Occurrence and distribution of putative neurotransmitters in the frog-lung parasite Haplometra cylindracea (Trematoda: Diginea). Parasitol Res 76(6):509–517

    Article  CAS  PubMed  Google Scholar 

  • McVeigh P, Kimber MJ, Novozhilova E, Day TA (2005) Neuropeptide signalling systems in flatworms. Parasitology 131:S41–S55

    Article  CAS  PubMed  Google Scholar 

  • McVeigh P, Mair GR, Atkinson L, Ladurner P, Zamanian M, Novozhilova E, Marks NJ, Day TA, Maule AG (2009) Discovery of multiple neuropeptide families in the phylum Platyhelminthes. Int J Parasitol 39:1243–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moravec F (2002) External morphological differences between Crepidostomum farionis and Crepidostomum metoecus (Trematoda: Allocreadiidae), parasites of salmonids, as revealed by SEM. Folia Parasitol 49:211–217. https://doi.org/10.14411/fp.2002.037

  • Mousley A, Marks NJ, Halton DW, Geary TG, Thompson DP, Maule AG (2004) Arthropod FMRFamide-related peptides modulate muscle activity in helminths. Int J Parasitol 34:755–768. https://doi.org/10.1016/j.ijpara.2004.02.005

  • Nefedova DA, Terenina NB, Mochalova N, Poddubnaya LG, Movsesyan SO, Gorgeev II, Kuchin AV, Kreshchenko ND (2021) The neuromuscular system in flatworms: serotonin and FMRFamide immunoreactivities, and musculature in Prodistomum alaskense (Digenea: Lepocreadiidae), an endemic fish parasite of the north-western Pacific. Can J Zool 99:689–701. https://doi.org/10.1139/cjz-2020-0245

    Article  CAS  Google Scholar 

  • Novozhilova E, Kimber MJ, Qian H, McVeigh P, Robertson AP, Zamanian M, Maule AG, Day TA (2010) FMRFamide-like peptides (FLPs) enhance voltage-gated calcium currents to elicit muscle contraction in the human parasite Schistosoma mansoni. PLoS Negl Trop Dis 4(8):e790. https://doi.org/10.1371/journal.pntd.0000790

  • Petkevičiūtė R, Stunženas V, Zhokhov AE, Poddubnaya G, Stanevičiūtė G (2018) Diversity and phylogenetic relationships of European species of Crepidostomum Braun, 1900 (Trematoda: Allocreadiidae) based on rDNA, with special reference to Crepidostomum oschmarini Zhokhov & Pugacheva, 1998). Parasit Vectors 11:530. https://doi.org/10.1186/s13071-018-3095-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrov AA, Podvyaznaya IM (2016) Muscle architecture during the course of development of Diplostomum pseudospathaceum Nieviadomska 1984 (Trematoda, Diplostomidae) from cercariae to metacercariae. J Helminthol 90:321–336. https://doi.org/10.1017/S0022149X15000310

    Article  CAS  PubMed  Google Scholar 

  • Razo-Mendivil U, Pérez-Ponce de León G, Rubio-Godoy M (2014) Testing the systematic position and relationships of Paracreptotrema heterandridae within the Allocreadiidae through partial 28s rRNA gene sequences. J Parasitol 100:537–541. https://doi.org/10.1645/13-421.1

    Article  PubMed  Google Scholar 

  • Rieger RM, Salvenmoser W, Legniti A, Tyler S (1994) Phalloidin-rhodamine preparations of Macrostomum hystricinum marinum (Plathelminthes): morphology and postembryonic development of the musculature. Zoomorphology 114:133–147

    Article  Google Scholar 

  • Ŝebelová S, Stewart M, Mousley A, Fried B, Marks N, Halton D (2004) The muscularture and associated innervation of adult and intramolluscan stages of Echinostoma caproni (Trematoda) visualized by confocal microscopy. Parasitol Res 93:196–206

    Article  PubMed  Google Scholar 

  • Shults RS, Gvozdev EV (1970) Fundamentals of general helminthology. Nauka, Moscow [In Russian]

  • Stewart MT, Marks NJ, Halton DW (2003a) Neuroactive substances and associated major muscle systems in Bucephaloides gracilescens (Trematoda: Digenea) metacercariae and adult. Parasitol Res 91(1):12–21

    Article  PubMed  Google Scholar 

  • Stewart MT, Mousley A, Koubkova B, Šebelova Š, Marks N, Halton DW (2003b) Gross anatomy of the muscle systems and associated innervation of Apatemon cobitidis proterorhini (Trematoda: Strigeidea), as visualized by confocal microscopy. Parasitology 126:273–282

    Article  CAS  PubMed  Google Scholar 

  • Terenina NB, Gustafsson MKS (2014) The functional morphology of the nervous system of parasitic flatworms (Trematodes, Cestodes). KMK Scientific Press, Moscow [In Russian]. https://tiedejatutkimus.fi/fi/results/publication/0028739814

  • Terenina NB, Tolstenkov OO, Fagerholm HP, Serbina EA, Vodjanitskaja SN, Gustafsson MKS (2006) The spacial relationship between the musculature and the NADPH-diaphorase activity of 5-HT and FMRF amide immunoreactivities in redia, cercaria and adult of Echinoparyphium aconiatum (Digenea). Tiss Cell 38:151–157

    Article  CAS  Google Scholar 

  • Terenina NB, Kreshchenko ND, Chilyuta NV, Zaripova FF (2015) Serotonin and neuropeptide FMRFamide in the nervous system of Opisthioglyphe ranae (Trematoda: Plagiorchiidae). An immunocytochemical study. J Evol Biochem Physiol 51(2):145–151. https://doi.org/10.1134/S0022093015020088

  • Terenina N, Kreshchenko N, Movsesyan S (2022) Musculature and neurotransmitters of internal organs of trematodes (the digestive, reproductive and excretory systems. Zoology 150:125986. https://doi.org/10.1016/j.zool.2021.125986

    Article  PubMed  Google Scholar 

  • Tolstenkov OO, Terenina NB, Shalaeva NM, Gaivoronskaja TV (2007) The organization of the muscular system and the distribution of NO-ergic and serotonineric elements of trematodes Allocreadium isoporum Looss, 1894 (Allocreadiidae) and Paramphistomum cervi Zeder, 1790 (Paramphistomatidae). Invertebr Zool 4:139–149. (in Russian, with English summary). https://doi.org/10.15298/invertzool.04.2.03

  • Tolstenkov OO, Terenina NB, Serbina EA, Gustafsson MKS (2010) The spatial relationship between the musculature and the 5-HT and FMRFamideimmunoreactivities in cercaria, metacercaria and adult Opisthorchis felineus (Digenea) Acta Parasitol 55:123–132. https://doi.org/10.2478/s11686-010-0024-4

  • Vainutis KS, Voronova AN, Urabe M, Kazarin VM (2023) Integrative approach for discovering of the new species within the genus Allocreadium Looss, 1900 (Trematoda: Allocreadiidae) and framing of biogeographical hypotheses for the genus. Syst Parasitol. https://doi.org/10.1007/s11320-022-10081-1

    Article  PubMed  Google Scholar 

  • Wahlberg MH (1998) The distribution of F-actin during the development of Diphyllobothrium dendriticum (Cestoda). Cell Tissue Res 291(3):561–570

    Article  CAS  PubMed  Google Scholar 

  • Walker RJ, Papaioannou S, Holden-Dye L (2009) A review of FMRFamide- and RFamide-like peptides in metazoan. Invert Neurosci 9:111–153. https://doi.org/10.1007/s10158-010-0097-7

    Article  CAS  PubMed  Google Scholar 

  • Yastrebov MV, Yastrebova IV (2014) Muscular system of trematodes. KMK Scientific Press Ltd, Moscow [In Russian]. https://www.litres.ru/i-v-yastrebova/myshechnaya-sistema-trematod-stroenie-i-vozmozhnye-puti-evolucii-24767018/

  • Žd'árská Z, Nebesářová J (2004) Transmission electron microscopy of presumed sensory receptors of the forebody papillae of Crepidostomum metoecus (Digenea: Allocreadiidae). Folia Parasitologica 51:27–32. https://doi.org/10.14411/fp.2004.004

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Authors wish to thank Yashin VA and Kuchin AV for technical assistance at the Optical Microscopy and Spectrophotometry Core Facilities of Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” (Pushchino, Moscow Region).

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Natalia D. Kreshchenko: investigation; supervision; visualization; writing-original draft, English translation; Nadezhda B. Terenina: data curation; supervision; validation; writing-original draft; Larisa G. Poddubnaya: SEM investigation; methodology, writing-original draft; Ekaterina L. Voropaeva: methodology; resources; Natalia V. Mochalova: investigation; methodology; Grigorii V. Kuznetsov: investigation, microscopy; Sergey O. Movsesyan: conceptualization; methodology; writing-original draft. All authors reviewed the manuscript.

Corresponding author

Correspondence to Natalia D. Kreshchenko.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Ethical approval

No approval of research ethics committees was required to accomplish the goals of this study because the experimental work was conducted with unregulated invertebrate specie.

Consent to participate

Not applicable.

Consent for publication

The manuscript has not been published in whole or in part elsewhere and is not currently being considered for publication in another journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kreshchenko, N.D., Terenina, N.B., Poddubnaya, L.G. et al. Acrolichanus auriculatus (Digenea, Allocreadiidae): distribution of sensory papillae, musculature and FMRFamide-like immunoreactivity in adult worms. Zoomorphology (2024). https://doi.org/10.1007/s00435-024-00665-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00435-024-00665-4

Keywords

Navigation