Skip to main content
Log in

Old dogs, new tricks: 3D geometric analysis of cranial morphology supports ancient population substructure in the Australian dingo

  • Original Paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

The dingo is a wild canid introduced to Australia within the last 5000 years. Existing research has identified up to three evolutionarily significant, geographically separated distinct populations of dingo on the Australian mainland. Contending explanations variably invoke ancient population substructure, separate introductions in antiquity, and disparate levels of recent domestic dog admixture. Here, I present an assessment of morphological variation in the dingo, applying 3D geometric morphometrics to compare the cranial forms of individuals from different regions in Australia, with the dingo’s closest relatives, New Guinea Singing Dogs, domestic dogs and dingo-dog hybrids. Dingoes from southeastern Australia were found to be morphologically distinct from conspecifics to their northwest, including both desert, tropical and Fraser Island dingoes, being intermediate to New Guinea Singing Dogs. The close resemblance of these results to genetic population subdivisions indicates that dingo morphology likely reflects ancient population substructure related to a complex prehistoric introduction and dispersal scenario, rather than solely introgression from domestic dogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baab KL, McNulty KP, Harvati K (2013) Homo floresiensis contextualized: a geometric morphometric comparative analysis of fossil and pathological human samples. PLoS ONE 8:e69119. https://doi.org/10.1371/journal.pone.0069119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballard G, Wilson LAB (2019) The Australian dingo: untamed or feral? Front Zool 16:1–19

    Article  Google Scholar 

  • Balme J, O’Connor S, Fallon S (2018) New dates on dingo bones from Madura Cave provide oldest firm evidence for arrival of the species in Australia. Sci Rep 8:9933. https://doi.org/10.1038/s41598-018-28324-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breckwoldt R (1988) A very elegant animal: the dingo. Angus and Robertson, Sydney

    Google Scholar 

  • Brook LA, Johnson CN, Ritchie EG (2012) Effects of predator control on behaviour of an apex predator and indirect consequences for mesopredator suppression. J Appl Ecol 49:1278–1286. https://doi.org/10.1111/j.1365-2664.2012.02207.x

    Article  Google Scholar 

  • Brown SK et al (2011) Phylogenetic distinctiveness of middle eastern and southeast Asian village dog Y Chromosomes illuminates dog origins. PLoS ONE 6:e28496. https://doi.org/10.1371/journal.pone.0028496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cairns KM, Wilton AN (2016) New insights on the history of canids in Oceania based on mitochondrial and nuclear data. Genetica 144:553–565

    Article  PubMed  Google Scholar 

  • Cairns KM, Brown SK, Sacks BN, Ballard JWO (2017) Conservation implications for dingoes from the maternal and paternal genome: multiple multiple populations, dog introgression, and demography. Ecol Evol 7:9787–9807. https://doi.org/10.1002/ece3.3487

    Article  PubMed  PubMed Central  Google Scholar 

  • Cairns KM, Shannon LM, Koler-Matznick J, Ballard JWO, Boyko AR (2018) Elucidating biogeographical patterns in Australian native canids using genome wide SNPs. PLoS ONE 13:e0198754. https://doi.org/10.1371/journal.pone.0198754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caughley G, Grigg GC, Caughley J, Hill GJE (1980) Does dingo predation control the densities of kangaroos and emus. Aust Wildl Res 7:1–12

    Article  Google Scholar 

  • Cignoni P, Callieri M, Corsini M, Dellepiane M, Ganovelli F, Ranzuglia G (2008) MeshLab: an open-source mesh processing tool. In: Scarano V (ed) Sixth eurographics Italian chapter conference, Salerno, Italy, Eurographics Association, pp 129–136

  • Colman NJ (2015) Morphological variation and ecological interactions of Australia's apex predator—the dingo (Canis dingo). University of Western Sydney, Sydney

    Google Scholar 

  • Contos P, Letnic M (2019) Top-down effects of a large mammalian carnivore in arid Australia extend to epigeic arthropod assemblages. J Arid Environ 165:16–27

    Article  Google Scholar 

  • Corbett LK (1985) Morphological comparisons of Australian and Thai dingoes: a reappraisal of dingo status, distribution and ancestry. Proc Ecol Soc Aust 13:277–291

    Google Scholar 

  • Corbett LK (1995) The dingo in Australia and Asia. Cornell University Press, New York

    Google Scholar 

  • Corbett LK (2001) The conservation status of the dingo Canis lupus dingo in Australia, with particular reference to New South Wales: threats to pure dingoes and potential solutions. In: Dickman CR, Lunney D (eds) A symposium on the dingo. Royal Society of New South Wales, Sydney, pp 10–19

    Chapter  Google Scholar 

  • Corbett LK (2006) The Australian dingo. In: Merrick JR, Archer M, Hickey GM, Lee MSY (eds) Evolution and biogeography in Australia. Auscipub Pty Ltd, Sydney, pp 745–751

    Google Scholar 

  • Corporation S (2018) Stratovan checkpoint 2018.08.07 edn

  • Daniels MJ, Corbett LK (2003) Redefining introgressed protected mammals: When is a wildcat a wild cat and a dingo a wild dog? Wildl Res 30:213–218

    Article  Google Scholar 

  • Derr M (2012) How the dog became the dog: from wolves to our best friends. Duckworth Overlook, London

    Google Scholar 

  • Drake AG (2011) Dispelling dog dogma: an investigation of heterochrony in dogs using 3D geometric morphometric analysis of skull shape. Evol Dev 13:204–213

    Article  PubMed  Google Scholar 

  • Dwyer PD, Minnegal M (2016) Wild dogs and village dogs in New Guinea: Were they different? Aust Mammal 38:1–11

    Article  Google Scholar 

  • Elledge AE, Leung LKP, Allen LR, Firestone K, Wilton AN (2006) Assessing the taxonomic status of dingoes Canis familiaris dingo for conservation. Mammal Rev 36:142–156. https://doi.org/10.1111/j.1365-2907.2006.00086.x

    Article  Google Scholar 

  • Fillios M, Gordon C, Koch F, Letnic M (2010) The effect of a top predator on kangaroo abundance in arid Australia and its implications for archaeological faunal assemblages. J Archaeol Sci 37:986–993. https://doi.org/10.1016/j.jas.2009.11.031

    Article  Google Scholar 

  • Geiger M, Evin A, Sánchez-Villagra MR, Gascho D, Mainini C, Zollikofer CPE (2017) Neomorphosis and heterochrony of skull shape in dog domestication. Sci Rep 7(1):13443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Germonpré M, Galetova M, Sablin M, Bocherens H (2018) Self-domestication or human control? The Upper Palaeolithic domestication of the wolf. In: Stépanoff C, Vigne J-D (eds) Hybrid communities: biosocial approaches to domestication and other trans-species relationships. Routledge, London, pp 39–64

    Chapter  Google Scholar 

  • Gollan K (1982) Prehistoric dingo. Australian National University, Canberra

    Google Scholar 

  • Greig K et al (2018) Complex history of dog (Canis familiaris) origins and translocations in the Pacific revealed by ancient mitogenomes. Sci Rep 8:9130. https://doi.org/10.1038/s41598-018-27363-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grey G (1841) Journal of two expeditions of discovery in north-west and western Australia, 1st edn. T&W Boone, London

    Google Scholar 

  • Hayden B (1975) Dingoes: pets or producers? Mankind 10:11–15

    Google Scholar 

  • Jackson SM, Groves CP, Fleming PJS, Aplin KP, Eldridge DB, Gonzalez A, Helgen K (2017) The wayward dog: is the Australian native dog or dingo a distinct species? Zootaxa 4317:201–224

    Article  Google Scholar 

  • Johnson CN, Isaac JL, Fisher DO (2007) Rarity of a top predator triggers continent wide collapse in mammal prey: dingoes and marsupials in Australia. Proc R Soc B 274:341–346

    Article  PubMed  Google Scholar 

  • Jolliffe IT (2002) Principial component analysis, 2nd edn. Springer-Verlag, New York

    Google Scholar 

  • Jones E (1990) Physical characteristics and taxonomic status of wild canids, canis-familiaris, from the eastern highlands of victoria. Wildl Res 17:69–81

    Article  Google Scholar 

  • Jones E (2009) Hybridisation between the dingo, Canis lupus dingo, and the domestic dog, Canis lupus familiaris, in Victoria: a critical review. Aust Mammal 31:1–7

    Article  Google Scholar 

  • Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357

    Article  PubMed  Google Scholar 

  • Klingenberg CP (2016) Size, shape, and form: concepts of allometry in geometric morphometrics. Dev Genes Evol https://doi.org/10.1007/s00427-016-0539-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Koler-Matznick J (2016) Dawn of the dog: the genesis of a natural species. Cynology Press, Central Point

    Google Scholar 

  • Koler-Matznick J, Yates BC, Bulmer S, Brisbin IL Jr (2007) The New Guinea singing dog: its status and scientific importance. Aust Mammal 29:47–56

    Article  Google Scholar 

  • Letnic M, Fillios M, Crowther MS (2012) Could direct killing by larger dingoes have caused the extinction of the Thylacine from Mainland Australia? PLoS ONE 7:e34877. https://doi.org/10.1371/journal.pone.0034877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyons MB, Mills CH, Gordon CE, Letnic M (2018) Linking trophic cascades to changes in desert dune geomorphology using high-resolution drone data. J R Soc Interface 15(144):20180327

    Article  PubMed  PubMed Central  Google Scholar 

  • Machado FA, Zahn TMG, Marroig G (2018) Evolution of morphological integration in the skull of Carnivora (Mammalia): Changes in Canidae lead to increased evolutionary potential of facial traits. Int J Org Evol 72:1399–1419

    Article  Google Scholar 

  • Meachen JA, Janowicz AC, Avery JE, Sadleir RW (2014) Ecological changes in coyotes (Canis latrans) in response to the Ice Age megafaunal extinctions. PLoS ONE 9:e116041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Newsome AE, Corbett LK (1982) The identity of the dingo II.* Hybridization with domestic dogs in captivity and in the wild Australian. J Zool 30:365–374

    Google Scholar 

  • Newsome AE, Corbett LK (1985) The identity of the dingo III.* The incidence of dingoes, dogs and hybrids and their coat colours in remote and settled regions of Australia. Aust J Zool 33:363–375

    Article  Google Scholar 

  • Newsome AE, Corbett LK, Carpenter SM (1980) The identity of the dingo I. Morphological discriminants of dingo and dog skulls. Aust J Zool 28:615–625

    Article  Google Scholar 

  • Parr WCH, Wilson LAB, Wroe S, Colman NJ, Crowther MS, Letnic M (2016) Cranial shape and the modularity of hybridization in dingoes and dogs; hybridization does not spell the end for native. Morphol Evolut Biol 43:171–187. https://doi.org/10.1007/s11692-016-9371-x

    Article  Google Scholar 

  • Petrie CG (1904) Reminscences of early Queensland. Watson, Ferguson and Co., Brisbane

    Google Scholar 

  • Pilot M et al (2015) On the origin of mongrels: evolutionary history of free-breeding dogs in Eurasia. Proc R Soc B 282(1820):2015–2189

    Article  CAS  Google Scholar 

  • Piper PJ (2017) The origins and arrival of the earliest domestic animals in Mainland and Island Southeast Asia: a developing story of complexity. In: New erspectives in Southeast Asian and Pacific prehistory, vol 45. ANU Press, Canberra, pp 251–274

    Google Scholar 

  • Radford CG, Letnic M, Fillios M, Crowther MS (2012) An assessment of the taxonomic status of wild canids in south-eastern New South Wales: phenotypic variation in dingoes. Aust J Zool 60:73–80

    Article  Google Scholar 

  • Savolainen P, Leitner T, Wilton AN, Matisoo-Smith E, Lundeberg J (2004) A detailed picture of the origin of the Australian dingo, obtained from the study of mitochondrial DNA. Proc Natl Acad Sci USA 101:12387–12390. https://doi.org/10.1073/pnas.0401814101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt E, Wallace S (2014) Shape change and variation in the cranial morphology of wild canids (Canis lupus, Canis latrans, Canis rufus) compared to domestic dogs (Canis familiaris) using geometric morphometrics. Int J Osteoarchaeol 24:42–50

    Article  Google Scholar 

  • Smith BP (2015) The dingo debate: origins, behaviour and conservation. CSIRO Publishing, Canberra

    Book  Google Scholar 

  • Smith BP, Litchfield CA (2009) A review of the relationship between indigenous Australians, dingoes (Canis dingo) and domestic dogs (Canis familiaris). Anthrozoös 22:111–128

    Article  Google Scholar 

  • Smith B et al (2019) Taxonomic status of the Australian dingo: the case for Canis dingo Meyer, 1793. Zootaxa 4564:173–197. https://doi.org/10.11646/zootaxa.4564.1.6

    Article  Google Scholar 

  • Stephens D, Wilton AN, Fleming PJS, Berry O (2015) Death by sex in an Australian icon: a continent-wide survey reveals extensive hybridization between dingoes and domestic dogs. Mol Ecol 24:5643–5656. https://doi.org/10.1111/mec.13416

    Article  CAS  PubMed  Google Scholar 

  • Troughton ELG (1957) A new native dog from the Papuan Highlands. In: Proceedings of the royal zoological society New South Wales, vol 1955–1956, pp 93–94

  • Wallach AD, Ritchie EG, Read JL, O'Neill AJ (2009) More than mere numbers: the impact of lethal control on the social stability of a top-order predator. PLoS ONE 4(9):e6861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wallach AD, Johnson CN, Ritchie EG, O’Neill AJ (2010) Predator control promotes invasive dominated ecological states. Ecol Lett 13:1008–1018. https://doi.org/10.1111/j.1461-0248.2010.01492.x

    Article  PubMed  Google Scholar 

  • White LC, Saltré F, Bradshaw CJA, Austin JJ (2018) High-quality fossil dates support a synchronous, Late Holocene extinction of devils and thylacines in mainland. Aust Biol Lett 14(1):20170642

    Article  Google Scholar 

  • Woodall PF, Pavlov P, Twyford KL (1996) Dingoes in Queensland, Australia: skull dimensions and the identity of wild canids. Wildl Res 23:581–587

    Article  Google Scholar 

  • Yravedra J, Aramendi J, Maté-González MÁ, Austin Courtenay L, González-Aguilera D (2018) Differentiating percussion pits and carnivore tooth pits using 3D reconstructions and geometric morphometrics. PLoS ONE 13:e0194324. https://doi.org/10.1371/journal.pone.0194324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S-J et al (2018) Genomic analysis of dingoes identifies genomic regions under reversible selection during domestication and feralization. BioRxiv. https://doi.org/10.1101/472084

    Article  Google Scholar 

Download references

Acknowledgements

Many thanks go to the Museums and their staff who assisted in my study of their collections: Sandy Ingleby, Harry Parnaby, Matthew McCurry and Allison Dejanovic at the Australian Museum; Denise Donlon at the Shellshear Museum; Jude Philp at the Macleay Museum; Karen Roberts and Tim Ziegler at Melbourne Museum, Leo Joseph and Chris Wilson at the CSIRO National Wildlife Collection; Heather Janetzki at the Queensland Museum; Gavin Dally and Rebecca Mirams at MAGNT, and Molly Hagemann at the Bishop Museum. I benefited from advice offered by Peter Hiscock and Amy Tabrett concerning Principal Components Analysis and allometry, from Kylie Cairns and Peter Savolainen regarding dingo population genetics, and general feedback from Val Attenbrow on this manuscript, as well as that of the anonymous reviewers. Thanks also go the providers of photographs of dingoes through Shutterstock.

Funding

This research was funded by an Australian Government Research Training Program (RTP) scholarship, and further supported by the University of Sydney’s Carlyle-Greenwell Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loukas Koungoulos.

Ethics declarations

Conflict of interest

Not applicable.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koungoulos, L. Old dogs, new tricks: 3D geometric analysis of cranial morphology supports ancient population substructure in the Australian dingo. Zoomorphology 139, 263–275 (2020). https://doi.org/10.1007/s00435-019-00475-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-019-00475-z

Keywords

Navigation