Skip to main content
Log in

The compound eye of Scutigera coleoptrata (Linnaeus, 1758) (Chilopoda: Notostigmophora): an ultrastructural reinvestigation that adds support to the Mandibulata concept

  • Original Article
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

The lateral compound eye of Scutigera coleoptrata was examined by electron microscopy. Each ommatidium consists of a dioptric apparatus, formed by a cornea and a multipartite eucone crystalline cone, a bilayered retinula and a surrounding sheath of primary pigment and interommatidial pigment cells. With reference to the median eye region, each cone is made up of eight cone segments belonging to four cone cells. The nuclei of the cone cells are located proximally outside the cone near the transition area between distal and proximal retinula cells. The connection between nuclear region and cone segment is via a narrow cytoplasmic strand, which splits into two distal cytoplasmic processes. Additionally, from the nuclear region of each cone cell a single cytoplasmic process runs in a proximal direction to the basement membrane. The bilayered rhabdom is usually made up of the rhabdomeres of 9–12 distal retinula cells and four proximal retinula cell. The pigment shield is composed of primary pigment cells (which most likely secrete the corneal lens) and interommatidial pigment cells. The primary pigment cells underlie the cornea and surround, more or less, the upper third of the crystalline cone. By giving rise to the cornea and by functioning as part of the pigment shield these pigment cells serve a double function. Interommatidial pigment cells extend from the cornea to the basement membrane and stabilise the ommatidium. In particular, the presence of cone cells, primary pigment cells as well as interommatidial pigment cells in the compound eye of S. coleoptrata is seen as an important morphological support for the Mandibulata concept. Furthermore, the phylogenetic significance of these cell types is discussed with respect to the Tetraconata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A–D.
Fig. 3A–D.
Fig. 4A–F.
Fig. 5A–G.
Fig. 6A, B.
Fig. 7A–F.

Similar content being viewed by others

References

  • Adensamer T (1894a) Über das Auge von Scutigera coleoptrata. Verh Zool Bot Ges Wien 43:8–9

    Google Scholar 

  • Adensamer T (1894b) Zur Kenntnis der Anatomie und Histologie von Scutigera coleoptrata. Verh Zool Bot Ges Wien 43:573–578

    Google Scholar 

  • Andersson A (1979) Cerebral sensory organs in ostracodes (Crustacea). Ph.D. Dissertation, University of Lund, Lund

  • Ax P (1999) Das System der Metazoa. II. Ein Lehrbuch der phylogenetischen Systematik. Fischer, Stuttgart

  • Bähr R (1971) Die Ultrastruktur der Photorezeptoren von Lithobius forficatus L. (Chilopoda: Lithobiidae). Z Zellforsch Mikrosk Anat 116:70–93

    PubMed  Google Scholar 

  • Bähr R (1974) Contribution to the morphology of chilopod eyes. Symp Zool Soc Lond 32:388–404

    Google Scholar 

  • Bedini C (1968) The ultrastructure of the eye of a centipede Polybothrus fasciatus (Newport). Monit Zool Ital (NS) 2:31–47

    Google Scholar 

  • Bernhard CG, Gemne G, Sällström J (1970) Comparative ultrastructure of corneal surface topography in insects with aspects on phylogenesis and function. Z Vgl Physiol 67:1–25

    Google Scholar 

  • Boore JL, Lavrov DV, Brown WM (1998) Gene translocation links insects and crustaceans. Nature 392:667–668

    Article  CAS  PubMed  Google Scholar 

  • Borucki H (1996) Evolution und phylogenetisches System der Chilopoda (Mandibulata, Tracheata). Verh Naturwiss Ver Hamburg (NF) 35:95–226

    Google Scholar 

  • Claus C (1888) Über den Organismus der Nebaliiden und die systematische Stellung der Leptostraken. Arb Zool Inst Wien 8:1–148

    Google Scholar 

  • Cook CE, Smith ML, Telford MJ, Bastianello A, Akam M (2001) Hox genes and the phylogeny of the arthropods. Curr Biol 11:759–763

    Google Scholar 

  • Diersch R, Melzer RR, Smola U (1999) Morphology of the compound eyes of two ancestral phyllopods, Triops cancriformis and Lepidurus apus (Notostraca: Triopsidae). J Crustac Biol 19:313–323

    Google Scholar 

  • Dohle W (1985) Phylogenetic pathways in the Chilopoda. Bijdr Dierk 55:55–66

    Google Scholar 

  • Dohle W (1998) Myriapod–insect relationships as opposed to an insect–crustacean sister group relationship. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman and Hall, London, pp 305–315

  • Dohle W (2001) Are the insects terrestrial crustaceans? A discussion of some new facts and arguments and the proposal of the proper name 'Tetraconata' for the monophyletic unit Crustacea + Hexapoda. In: Deuve T (ed) Origin of the Hexapoda. Ann Soc Entomol Fr (NS) 37:85–103

    Google Scholar 

  • Edgecombe GD, Giribet G (2002) Myriapod phylogeny and the relationships of Chilopoda. In: Llorente Bousquets J, Morrone J (eds) Biodiversidad, Taxonomía y Biogeografia de Artrópodos de México: Hacia una Síntesis de su Conocimiento. Prensas de Ciencias, Universidad Nacional Autónoma de México, pp 143–168

  • Edgecombe GD, Giribet G, Wheeler WC (1999) Phylogeny of Chilopoda: combining 18S and 28S rRNA sequences and morphology. In: Melic A, de Haro JJ, Mendez M, Ribera I (eds) Evolución y Filogenia de Arthropoda. Bol Soc Entomol Aragonesa 26:293–331

    Google Scholar 

  • Elofsson R (1976) Rhabdom adaptation and its phylogenetic significance. Zool Scr 5:97–101

    Google Scholar 

  • Elofsson R, Odselius R (1975) The anostracan rhabdom and the basement membrane. An ultrastructural study of the Artemia compound eye (Crustacea). Acta Zool 56:141–153

    Google Scholar 

  • Fahrenbach WH (1999) Merostomata. In: Harrison FW, Foelix RF (eds) Microscopic anatomy of invertebrates, vol 8A. Chelicerate Arthropoda. Wiley, New York, pp 21–115

  • Fischer A, Horstmann G (1971) Der Feinbau des Auges der Mehlmotte, Ephestia kuehniella Zeller (Lepidoptera, Pyralididae). Z Zellforsch 116:275–304

    CAS  Google Scholar 

  • Friedrich M, Tautz D (2001) Arthropod rDNA phylogeny revisited: a consistency analysis using Monte Carlo simulation. In: Deuve T (ed) Origin of the Hexapoda. Ann Soc Entomol Fr (NS) 37:21–40

    Google Scholar 

  • Giribet G, Edgecombe GD, Wheeler WC (2001) Arthropod phylogeny based on eight molecular loci and morphology. Nature 413:157–161

    Article  CAS  PubMed  Google Scholar 

  • Gokan N, Meyer-Rochow VB (2000) Morphological comparisons of compound eyes in Scarabaeoidea (Coleoptera) related to the beetles' daily activity maxima and phylogenetic positions. J Agric Sci 45:15–61

    Google Scholar 

  • Grenacher H (1880) Über die Augen einiger Myriapoden. Zugleich eine Entgegnung an V. Graber. Arch Mikrosk Anat Entwwicklungsmech 18:415–467

    Google Scholar 

  • Hafner GS, Tokarski TR (1998) Morphogenesis and pattern formation in the retina of the crayfish Procambarus clarkii. Cell Tissue Res 293:535–550

    CAS  PubMed  Google Scholar 

  • Hallberg E (1977) The fine structure of the compound eyes of mysids (Crustacea: Mysidacea). Cell Tissue Res 184:45–65

    CAS  PubMed  Google Scholar 

  • Hallberg E (1982) The fine structure of the compound eye of Argulus foliaceus (Crustacea: Branchiura). Zool Anz 208:227–236

    Google Scholar 

  • Hallberg E, Elofsson R (1983) The larval compound eye of barnacles. J Crustac Biol 3:17–24

    Google Scholar 

  • Hallberg E, Elofsson R (1989) Construction of the pigment shield of the crustacean compound eye: a review. J Crustac Biol 9:359–372

    Google Scholar 

  • Hallberg E, Elofsson R, Grygier MJ (1985) An ascothoracid compound eye (Crustacea). Sarsia 70:167–171

    Google Scholar 

  • Hanström B (1926). Eine genetische Studie über die Augen und Sehzentren von Turbellarien, Anneliden und Arthropoden (Trilobiten, Xiphosuren, Eruypteriden, Arachnoiden, Myriapoden, Crustaceen und Insekten). Kungl Sven Vetenskapsakad Handl 4:1–176

    Google Scholar 

  • Hanström B (1934) Bemerkungen über das Komplexauge der Scutigeriden. Lunds Univ Årsskrift /2 N.F. 30:1–14

  • Harzsch S, Walossek D (2001) Neurogenesis in the developing visual system of the branchiopod crustacean Triops longicaudatus (LeConte, 1846): corresponding patterns of compound-eye formation in Crustacea and Insecta? Dev Genes Evol 211:37–43

    CAS  PubMed  Google Scholar 

  • Hemenway J (1900) The structure of the eye of Scutigera (Cermatia) forceps. Biol Bull 1:205–213

    Google Scholar 

  • Hesse R (1901) Untersuchungen über die Organe der Lichtempfindung bei niederen Thieren. VII. Von den Arthropoden-Augen. Z Wiss Zool 70:347–473

    Google Scholar 

  • Horváth G, Clarkson ENK, Pix W (1997) Survey of modern counterparts of schizochroal trilobite eyes: structural and functional similarities and differences. Hist Biol 12:229–263

    Google Scholar 

  • Hwang UW, Friedrich M, Tautz D, Park CJ, Kim W (2001) Mitochondrial protein phylogeny joins myriapods with chelicerates. Nature 413:154–157

    Article  CAS  PubMed  Google Scholar 

  • Joly R (1969) Sur l'ultrastructure de l'oeil de Lithobius forficatus L. (Myriapode Chilopode). C R Acad Sci Paris Ser D 268:3180–3182

    Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137–138

    Google Scholar 

  • Knoll HJ (1974) Untersuchungen zur Entwicklungsgeschichte von Scutigera coleoptrata L. (Chilopoda). Zool Jahrb Anat 92:47–132

    Google Scholar 

  • Kraus O (2001) "Myriapoda" and the ancestry of the Hexapoda. In: Deuve T (ed) Origin of the Hexapoda. Ann Soc Entomol Fr 37:105–127

    Google Scholar 

  • Kraus O, Kraus M (1994) Phylogenetic system of the Tracheata (Mandibulata): on "Myriapoda"-Insecta interrelationships, phylogenetic age and primary ecological niches. Verh Naturwiss Ver Hamburg (NF) 34:5–31

    Google Scholar 

  • Kusche K, Burmester T (2001) Diplopod hemocyanin sequence and the phylogenetic position of the Myriapoda. Mol Biol Evol 18:1566–1573

    CAS  PubMed  Google Scholar 

  • Levi-Setti R, Clarkson ENK, Horváth G (1998) The eye: paleontology. In: Italian Encyclopedia, part 1. Origin and evolution of life. Instituto della Enciclopedia Italiana, Rome, pp 379–395

  • Melzer RR, Diersch R, Nicastro D, Smola U (1997) Compound eye evolution: highly conserved retinula and cone cell patterns indicate a common origin of the insect and crustacean ommatidium. Naturwissenschaften 84:542–544

    Article  CAS  Google Scholar 

  • Melzer RR, Michalke C, Smola U (2000) Walking on insect paths? Early ommatidial development in the compound eye of the ancestral crustacean, Triops cancriformis. Naturwissenschaften 87:308–311

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Rochow VB (1971) A crustacean-like organization of insect rhabdoms. Cytobiology 4:241–258

    Google Scholar 

  • Meyer-Rochow VB (1975) Larval and adult eye of the western rock lobster (Panulirus longipes). Cell Tissue Res 162:439–457

    CAS  PubMed  Google Scholar 

  • Meyer-Rochow VB, Au D, Keskinen E (2001) Photoreception in fishlike (Branchiura): the eyes of Argulus foliaceus Linne, 1758 and A. coregoni Thorell, 1865. Acta Parasitol 46:321–331

    Google Scholar 

  • Müller CHG, Rosenberg J, Meyer-Rochow VB (2003) Hitherto undescribed interommatidial exocrine glands in Chilopoda. Afr Invertebrates 44:(in press)

  • Nagashima T, Meyer-Rochow VB (1995) Ommatidial structure of the adult stonefly Oyamia lugubris (McLachlan) (Plecoptera: Perlidae). Jpn J Entomol 63:503–514

    Google Scholar 

  • Nilsson D-E (1990) Three unexpected cases of refracting superposition eyes in crustaceans. J Comp Physiol A 167:71–78

    Google Scholar 

  • Nilsson D-E, Osorio D (1998) Homology and parallelism in arthropod sensory processing. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman and Hall, London, pp 317–332

  • Odselius R, Elofsson R (1981) The basement membrane of the insect and crustacean compound eye: definition, fine structure, and comparative morphology. Cell Tissue Res 216:205–214

    CAS  PubMed  Google Scholar 

  • Packard D (1880) The eyes and brain of Cermatia forceps. Am Nat 14:602–603

    Google Scholar 

  • Paulus HF (1975) The compound eyes of apterygote insects. In: Horridge GA (ed) The compound eye and vision of insects. Clarendon, Oxford, pp 3–19

  • Paulus HF (1979) Eye structure and the monophyly of the Arthropoda. In: Gupta AP (ed) Arthropod phylogeny. Van Nostrand Reinhold, New York, pp 299–383

  • Paulus HF (1986) Evolutionswege zum Larvalauge der Insekten: Ein Modell für die Entstehung und Ableitung der ozellären Lateralaugen der Myriapoda von Facettenaugen. Zool Jahrb Syst 113:353–371

    Google Scholar 

  • Paulus HF (2000) Phylogeny of the Myriapoda–Crustacea–Insecta: a new attempt using photoreceptor structure. J Zool Syst Evol Res 38:189–208

    Article  Google Scholar 

  • Richter S (1999) The structure of the ommatidia of the Malacostraca (Crustacea): a phylogenetic approach. Verh Naturwiss Ver Hamburg (NF) 38:161–204

    Google Scholar 

  • Richter S (2002) The Tetraconata concept: Hexapod–crustacean relationships and the phylogeny of Crustacea. Org Div Evol 2:217–237

    Google Scholar 

  • Rosenberg J, Henning U, Langer H (2000/01) Diurnal changes of fine structure in the compound eyes of the ghost crab Ocypode ryderi (Crustacea, Decapoda, Ocypodidae). Acta Biol Benrodis 11:53–70

    Google Scholar 

  • Rosenstadt B (1896) Zur morphologischen Beurtheilung der Augen von Scutigera. Zool Anz 19:369–375

    Google Scholar 

  • Schönenberger N (1977) The fine structure of the compound eye of Squilla mantis (Stomatopoda). Cell Tissue Res 176:205–233

    PubMed  Google Scholar 

  • Shaw R, Stowe S (1982) Photoreception. In: Atwood HL, Sandeman DC (eds): The biology of Crustacea, vol 3. Neurobiology: structure and function. Academic, New York, pp 291–367

  • Sograff N (1879) Vorläufige Mittheilungen über die Organisation der Myriapoden. Zool Anz 2:16–18

    Google Scholar 

  • Spies T (1981) Structure and phylogenetic interpretation of diplopod eyes (Diplopoda). Zoomorphology 98:241–260

    Google Scholar 

  • Wägele JW (1993) Rejection of the "Uniramia" hypothesis and implications of the Mandibulata concept. Zool Jahrb Syst 120:253–288

    Google Scholar 

  • Whitington PM (1996) Evolution of neural development in the arthropods. Semin Cell Dev Biol 7:605–614

    Article  Google Scholar 

Download references

Acknowledgements

For their considerable support we are grateful to Prof. Dr. Ludwig Jonas and his employees working at the Electron Microscopic Centre of the Medical Faculty of the University of Rostock. We also wish to thank Prof. Dr. Ragnar Kinzelbach (University of Rostock) for having suggested some excellent points for the discussion and for having critically read our manuscript. Cand. rer. nat. Andy Sombke provided assistance with sampling of Scutigera coleoptrata on the islands of Ibiza and Šipan. Furthermore, the skilful technical assistance of Dr. Hans Pohl (University of Rostock) with regard to editing our figures and tables is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten H. G. Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, C.H.G., Rosenberg, J., Richter, S. et al. The compound eye of Scutigera coleoptrata (Linnaeus, 1758) (Chilopoda: Notostigmophora): an ultrastructural reinvestigation that adds support to the Mandibulata concept. Zoomorphology 122, 191–209 (2003). https://doi.org/10.1007/s00435-003-0085-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-003-0085-0

Keywords

Navigation