Skip to main content

Advertisement

Log in

Recent advances and applications of peptide–agent conjugates for targeting tumor cells

  • Review
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

Cancer, being a complex disease, presents a major challenge for the scientific and medical communities. Peptide therapeutics have played a significant role in different medical practices, including cancer treatment.

Method

This review provides an overview of the current situation and potential development prospects of anticancer peptides (ACPs), with a particular focus on peptide vaccines and peptide-drug conjugates for cancer treatment.

Results

ACPs can be used directly as cytotoxic agents (molecularly targeted peptides) or can act as carriers (guiding missile) of chemotherapeutic agents and radionuclides by specifically targeting cancer cells. More than 60 natural and synthetic cationic peptides are approved in the USA and other major markets for the treatment of cancer and other diseases. Compared to traditional cancer treatments, peptides exhibit anticancer activity with high specificity and the ability to rapidly kill target cancer cells. ACP's target and kill cancer cells via different mechanisms, including membrane disruption, pore formation, induction of apoptosis, necrosis, autophagy, and regulation of the immune system. Modified peptides have been developed as carriers for drugs, vaccines, and peptide–drug conjugates, which have been evaluated in various phases of clinical trials for the treatment of different types of solid and leukemia cancer.

Conclusions

This review highlights the potential of ACPs as a promising therapeutic option for cancer treatment, particularly through the use of peptide vaccines and peptide–drug conjugates. Despite the limitations of peptides, such as poor metabolic stability and low bioavailability, modified peptides show promise in addressing these challenges.

Graphical abstract

Various mechanism of action of anticancer peptides. Modes of action against cancer cells including: inducing apoptosis by cytochrome c release, direct cell membrane lysis (necrosis), inhibiting angiogenesis, inducing autophagy-mediated cell death and immune cell regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data accessibility

This article does not contain any additional data.

Abbreviations

ACPs:

Anticancer peptides

PDCs:

Peptide–drug conjugates

HNP-1:

Human neutrophil peptide

LfcinB:

Lactoferrin

GHRH:

Growth hormone-releasing hormone

STAT3:

Signal transducer and activator of transcription 3

GSH:

Glutathione

ADCs:

Antibody–drug conjugates

mAb:

Monoclonal antibody

USFDA:

US Food and Drug Administration

BBB:

Blood–brain barrier

SORT1:

Sortilin 1

DTX:

Docetaxel

NSCLC:

Non-small cell lung cancer

HDM-2:

Human double minute 2

Apaf-1:

Apoptotic protease-activating factor-1

ROS:

Reactive oxygen species

TP53:

Tumor protein 53

AIF:

Apoptosis-inducing factor

EndoG:

Endonuclease G

PLP2:

Proteolipid protein 2

DAMPs:

Damage-associated molecular patterns

HMGB1:

High-mobility group protein B1

VEGF:

Vascular endothelial growth factor

PDGF:

Platelet-derived growth factor

FGF:

Fibroblast growth factor

CK2:

Casein kinase 2

MMP:

Matrix metalloproteinase

VEGF-A:

Vascular endothelial growth factor

ALA-A2:

Alpha-lactalbumin-A2

IC50:

Half maximal inhibitory concentration

DCs:

Dendritic cells

Treg:

Regulatory T cell

IFN-γ:

Interferon-gamma

HLA:

Human leukocyte antigen

IL-2:

Interleukin-2

PEG:

Polyethylene glycol

MOMP:

Mitochondrial outer membrane permeabilization

Cyt c:

Cytochrome c

AIF:

Apoptotic-inducing factor

mPTP:

Mitochondrial permeability transition pore

IMM:

Inner mitochondria membrane

VDAC:

Voltage-dependent anion channels

MTD:

Mitochondrial-targeting domain

UCPVax:

Universal cancer peptide-based vaccine

RhoC:

Ras homolog gene family member C

SSRT2:

Somatostatin receptor-2

References

  • Abdelmageed MI, Abdelmoneim AH, Mustafa MI, Elfadol NM, Murshed NS, Shantier SW, Makhawi AM (2020) Design of a multiepitope-based peptide vaccine against the E protein of human COVID-19: an immunoinformatics approach. BioMed Res Int 2020:1–12

    Article  Google Scholar 

  • Ackler S, Mitten MJ, Foster K, Oleksijew A, Refici M, Tahir SK, Xiao Y, Tse C, Frost DJ et al (2010) The Bcl-2 inhibitor ABT-263 enhances the response of multiple chemotherapeutic regimens in hematologic tumors in vivo. Cancer Chemother Pharmacol 66:869–880. https://doi.org/10.1007/s00280-009-1232-1

    Article  CAS  PubMed  Google Scholar 

  • Adebomi V, Cohen RD, Wills R, Chavers HAH, Martin GE, Raj M (2019) CyClick chemistry for the synthesis of cyclic peptides. Angew Chem 131:19249–19256

    Article  Google Scholar 

  • Adis R&D Profile (2005) Histrelin hydrogel implant–valera: Histrelin implant, LHRH-Hydrogel implant, RL 0903, SPD 424. Drugs R D 6:53–55. https://doi.org/10.2165/00126839-200506010-00007

  • Adotévi O, Vernerey D, Jacoulet P, Meurisse A, Laheurte C, Almotlak H, Jacquin M, Kaulek V, Boullerot L et al (2023) Safety, immunogenicity, and 1-year efficacy of universal cancer peptide-based vaccine in patients with refractory advanced non-small-cell lung cancer: a phase Ib/phase IIa de-escalation study. J Clin Oncol 41:373–384. https://doi.org/10.1200/jco.22.00096

    Article  PubMed  Google Scholar 

  • Agrawal P, Bhagat D, Mahalwal M, Sharma N, Raghava GP (2021) AntiCP 2.0: an updated model for predicting anticancer peptides. Brief Bioinform 22:bbaa153

    Article  PubMed  Google Scholar 

  • Alas M, Saghaeidehkordi A, Kaur K (2020) Peptide–drug conjugates with different linkers for cancer therapy. J Med Chem 64:216–232

    Article  PubMed  PubMed Central  Google Scholar 

  • Alizadeh AM, Faghihi M, Khori V, Sohanaki H, Pourkhalili K, Mohammadghasemi F, Mohsenikia MJP (2012) Oxytocin protects cardiomyocytes from apoptosis induced by ischemia–reperfusion in rat heart: role of mitochondrial ATP-dependent potassium channel and permeability transition pore. Peptides 36:71–77

    Article  CAS  PubMed  Google Scholar 

  • Alizadeh AM, Shiri S, Farsinejad S (2014) Metastasis review: from bench to bedside. Tumour Biol 35:8483–8523. https://doi.org/10.1007/s13277-014-2421-z

    Article  PubMed  Google Scholar 

  • Apostolopoulos V, McKenzie IF (1994) Cellular mucins: targets for immunotherapy. Crit Rev Immunol 14:293

    Article  CAS  PubMed  Google Scholar 

  • Apostolopoulos V, Bojarska J, Chai T-T, Feehan J, Kaczmarek K, Matsoukas JM, Paredes Lopez O, Saviano M, Skwarczynski M et al (2022a) New advances in short peptides: looking forward, vol 27. In: MDPI, p 3635

  • Apostolopoulos V, Bojarska J, Feehan J, Matsoukas J, Wolf W (2022b) Smart therapies against global pandemics: a potential of short peptides. Front Pharmacol 13:914467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araf Y, Moin AT, Timofeev VI, Faruqui NA, Saiara SA, Ahmed N, Parvez MSA, Rahaman TI, Sarkar B et al (2022) Immunoinformatic design of a multivalent peptide vaccine against mucormycosis: targeting FTR1 protein of major causative fungi. Front Immunol 13:863234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnoult D, Gaume B, Karbowski M, Sharpe JC, Cecconi F, Youle RJ (2003) Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. EMBO J 22:4385–4399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avrahami D, Shai Y (2002) Conjugation of a magainin analogue with lipophilic acids controls hydrophobicity, solution assembly, and cell selectivity. Biochemistry 41:2254–2263

    Article  CAS  PubMed  Google Scholar 

  • Bae S, Oh K, Kim H, Kim Y, Kim HR, Hwang YI, Lee DS, Kang JS, Lee WJ (2013) The effect of alloferon on the enhancement of NK cell cytotoxicity against cancer via the up-regulation of perforin/granzyme B secretion. Immunobiology 218:1026–1033. https://doi.org/10.1016/j.imbio.2012.12.002

    Article  CAS  PubMed  Google Scholar 

  • Bana P, Örkényi R, Lövei K, Lakó Á, Túrós GI, Éles J, Faigl F, Greiner I (2017) The route from problem to solution in multistep continuous flow synthesis of pharmaceutical compounds. Biorg Med Chem 25:6180–6189

    Article  CAS  Google Scholar 

  • Bekaii-Saab T, Wesolowski R, Ahn DH, Wu C, Mortazavi A, Lustberg M, Ramaswamy B, Fowler J, Wei L et al (2019) Phase I immunotherapy trial with two chimeric HER-2 B-cell peptide vaccines emulsified in montanide ISA 720VG and nor-MDP adjuvant in patients with advanced solid tumors phase I immunotherapy trial with two B-cell vaccines. Clin Cancer Res 25:3495–3507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett NC, Gardiner RA, Hooper JD, Johnson DW, Gobe GC (2010) Molecular cell biology of androgen receptor signalling. Int J Biochem Cell Biol 42:813–827

    Article  CAS  PubMed  Google Scholar 

  • Bhonsle JB, Clark T, Bartolotti L, Hicks RP (2013) A brief overview of antimicrobial peptides containing unnatural amino acids and ligand-based approaches for peptide ligands. Curr Top Med Chem 13:3205–3224

    Article  CAS  PubMed  Google Scholar 

  • Biri-Kovács B, Bánóczi Z, Tummalapally A, Szabó I (2023) Peptide vaccines in melanoma: chemical approaches towards improved immunotherapeutic efficacy. Pharmaceutics 15:452

    Article  PubMed  PubMed Central  Google Scholar 

  • Bojarska J, Mieczkowski A, Ziora ZM, Skwarczynski M, Toth I, Shalash AO, Parang K, El-Mowafi SA, Mohammed EH et al (2021) Cyclic dipeptides: the biological and structural landscape with special focus on the anti-cancer proline-based scaffold. Biomolecules 11:1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boohaker RJ, Lee MW, Vishnubhotla P, Perez JLM, Khaled AR (2012) The use of therapeutic peptides to target and to kill cancer cells. Curr Med Chem 19:3794–3804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  • Calcott MJ, Ackerley DF (2014) Genetic manipulation of non-ribosomal peptide synthetases to generate novel bioactive peptide products. Biotechnol Lett 36:2407–2416

    Article  CAS  PubMed  Google Scholar 

  • Caliceti P, Veronese FM (2003) Pharmacokinetic and biodistribution properties of poly (ethylene glycol)–protein conjugates. Adv Drug Del Rev 55:1261–1277

    Article  CAS  Google Scholar 

  • Calvillo-Rodríguez KM, Mendoza-Reveles R, Gómez-Morales L, Uscanga-Palomeque AC, Karoyan P, Martínez-Torres AC, Rodríguez-Padilla C (2022) PKHB1, a thrombospondin-1 peptide mimic, induces anti-tumor effect through immunogenic cell death induction in breast cancer cells. Oncoimmunology 11:2054305

    Article  PubMed  PubMed Central  Google Scholar 

  • Campanile M, Oliva R, D’Errico G, Del Vecchio P, Petraccone L (2023) The anticancer peptide LL-III alters the physico-chemical properties of a model tumor membrane promoting lipid bilayer permeabilization. PCCP 25:3639

    Article  CAS  PubMed  Google Scholar 

  • Canalle LA, Löwik DW, van Hest JC (2010) Polypeptide–polymer bioconjugates. Chem Soc Rev 39:329–353

    Article  CAS  PubMed  Google Scholar 

  • Carafoli E (2002) Calcium signaling: a tale for all seasons. Proc Natl Acad Sci 99:1115–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chames P, Van Regenmortel M, Weiss E, Baty D (2009) Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol 157:220–233. https://doi.org/10.1111/j.1476-5381.2009.00190.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang E, Weinstock C, Zhang L, Charlab R, Dorff SE, Gong Y, Hsu V, Li F, Ricks TK et al (2021) fda approval summary: enfortumab vedotin for locally advanced or metastatic urothelial carcinoma FDA approval summary: enfortumab vedotin. Clin Cancer Res 27:922–927

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Mant C, Hodges R (2002) Determination of stereochemistry stability coefficients of amino acid side-chains in an amphipathic α-helix. J Pept Res 59:18–33

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Mant CT, Farmer SW, Hancock RE, Vasil ML, Hodges RS (2005) Rational design of α-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J Biol Chem 280:12316–12329

    Article  CAS  PubMed  Google Scholar 

  • Chen YQ, Min C, Sang M, Han YY, Ma X, Xue XQ, Zhang SQ (2010) A cationic amphiphilic peptide ABP-CM4 exhibits selective cytotoxicity against leukemia cells. Peptides 31:1504–1510

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Cohen J, Song X, Zhao A, Ye Z, Feulner CJ, Doonan P, Somers W, Lin L et al (2016) Improved variants of SrtA for site-specific conjugation on antibodies and proteins with high efficiency. Sci Rep 6:31899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chin Y-T, Wang L-M, Hsieh M-T, Shih Y-J, Nana AW, Changou CA, Yang Y-CS, Chiu H-C, Fu E et al (2017) Leptin OB3 peptide suppresses leptin-induced signaling and progression in ovarian cancer cells. J Biomed Sci 24:1–13

    Article  Google Scholar 

  • Choi YJ, Park SJ, Park YS, Park HS, Yang KM, Heo K (2018) EpCAM peptide-primed dendritic cell vaccination confers significant anti-tumor immunity in hepatocellular carcinoma cells. PLoS ONE 13:e0190638. https://doi.org/10.1371/journal.pone.0190638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colgrave ML, Kotze AC, Huang YH, O’Grady J, Simonsen SM, Craik DJ (2008) Cyclotides: natural, circular plant peptides that possess significant activity against gastrointestinal nematode parasites of sheep. Biochemistry 47:5581–5589. https://doi.org/10.1021/bi800223y

    Article  CAS  PubMed  Google Scholar 

  • Conibear AC, Watson EE, Payne RJ, Becker CF (2018) Native chemical ligation in protein synthesis and semi-synthesis. Chem Soc Rev 47:9046–9068

    Article  CAS  PubMed  Google Scholar 

  • Conibear AC, Schmid A, Kamalov M, Becker CF, Bello C (2020) Recent advances in peptide-based approaches for cancer treatment. Curr Med Chem 27:1174–1205

    Article  CAS  PubMed  Google Scholar 

  • Constance JE, Lim CS (2012) Targeting malignant mitochondria with therapeutic peptides. Ther Deliv 3:961–979. https://doi.org/10.4155/tde.12.75

    Article  CAS  PubMed  Google Scholar 

  • Cooper BM, Iegre J, O’Donovan DH, Halvarsson MÖ, Spring DR (2021) Peptides as a platform for targeted therapeutics for cancer: peptide–drug conjugates (PDCs). Chem Soc Rev 50:1480–1494

    Article  CAS  PubMed  Google Scholar 

  • Copolovici DM, Langel K, Eriste E, Langel U (2014) Cell-penetrating peptides: design, synthesis, and applications. ACS Nano 8:1972–1994

    Article  CAS  PubMed  Google Scholar 

  • Cornelio D, Roesler R, Schwartsmann G (2007) Gastrin-releasing peptide receptor as a molecular target in experimental anticancer therapy. Ann Oncol 18:1457–1466

    Article  CAS  PubMed  Google Scholar 

  • D’arcy MS (2019) Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43:582–592

    Article  PubMed  Google Scholar 

  • Dai CC, Huang W, Yang J, Hussein WM, Wang J, Khalil ZG, Capon RJ, Toth I, Stephenson RJ (2021) Polyethylenimine quantity and molecular weight influence its adjuvanting properties in liposomal peptide vaccines. Bioorg Med Chem Lett 40:127920

    Article  CAS  PubMed  Google Scholar 

  • Darabi A, Thuring C, Paulsson KM (2014) HLA-I antigen presentation and tapasin influence immune responses against malignant brain tumors–considerations for successful immunotherapy. Anti-Cancer Agents Med Chem (formerly Current Medicinal Chemistry-Anti-Cancer Agents) 14:1094–1100

    Article  CAS  Google Scholar 

  • Das S, Al-Toubah T, El-Haddad G, Strosberg J (2019) 177Lu-DOTATATE for the treatment of gastroenteropancreatic neuroendocrine tumors. Expert Rev Gastroenterol Hepatol 13:1023–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies JS (2003) The cyclization of peptides and depsipeptides. J Pept Sci 9:471–501

    Article  CAS  PubMed  Google Scholar 

  • Davitt K, Babcock BD, Fenelus M, Poon CK, Sarkar A, Trivigno V, Zolkind PA, Matthew SM, Grin’kina N et al (2014) The anti-cancer peptide, PNC-27, induces tumor cell necrosis of a poorly differentiated non-solid tissue human leukemia cell line that depends on expression of HDM-2 in the plasma membrane of these cells. Ann Clin Lab Sci 44:241–248

    PubMed  Google Scholar 

  • de la Torre BG, Albericio F (2022) The pharmaceutical industry in 2021. An analysis of FDA drug approvals from the perspective of molecules. Molecules 27:1075. https://doi.org/10.3390/molecules27031075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de la Torre BG, Albericio F (2023) The pharmaceutical industry in 2022: an analysis of FDA drug approvals from the perspective of molecules. Molecules 28:1038. https://doi.org/10.3390/molecules28031038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deeks ED (2019) Polatuzumab vedotin: first global approval. Drugs 79:1467–1475

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng X, Qiu Q, Wang X, Huang W, Qian H (2016) Design, synthesis, and biological evaluation of novel cholesteryl peptides with anticancer and multidrug resistance-reversing activities. Chem Biol Drug Des 87:374–381

    Article  CAS  PubMed  Google Scholar 

  • Dennison SR, Harris F, Phoenix DA (2007) The interactions of aurein 1.2 with cancer cell membranes. Biophys Chem 127:78–83. https://doi.org/10.1016/j.bpc.2006.12.009

    Article  CAS  PubMed  Google Scholar 

  • Dhillon S (2021) Melphalan flufenamide (Melflufen): first approval. Drugs 81:963–969

    Article  CAS  PubMed  Google Scholar 

  • Dhillon S (2022) Tebentafusp: first approval. Drugs 82:703–710

    Article  CAS  PubMed  Google Scholar 

  • Di L (2015) Strategic approaches to optimizing peptide ADME properties. AAPS J 17:134–143

    Article  CAS  PubMed  Google Scholar 

  • Dossa F, Acuna SA, Rickles AS, Berho M, Wexner SD, Quereshy FA, Baxter NN, Chadi SA (2018) Association between adjuvant chemotherapy and overall survival in patients with rectal cancer and pathological complete response after neoadjuvant chemotherapy and resection. JAMA Oncol 4:930–937

    Article  PubMed  PubMed Central  Google Scholar 

  • Doti N, Mardirossian M, Sandomenico A, Ruvo M, Caporale A (2021) Recent applications of retro-inverso peptides. Int J Mol Sci 22:8677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutoit V, Migliorini D, Ranzanici G, Marinari E, Widmer V, Lobrinus JA, Momjian S, Costello J, Walker PR et al (2018) Antigenic expression and spontaneous immune responses support the use of a selected peptide set from the IMA950 glioblastoma vaccine for immunotherapy of grade II and III glioma. Oncoimmunology 7:e1391972

    Article  PubMed  Google Scholar 

  • Ellerby HM, Arap W, Ellerby LM, Kain R, Andrusiak R, Rio GD, Krajewski S, Lombardo CR, Rao R et al (1999) Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med 5:1032–1038

    Article  CAS  PubMed  Google Scholar 

  • Engelberg Y, Landau M (2020) The Human LL-37 (17–29) antimicrobial peptide reveals a functional supramolecular structure. Nat Commun 11:3894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan X, Wang T, Han M, Gu Y, Sun G, Peng X, Shou Q, Song H, Liu W et al (2022) Dual CEA/CD44 targeting to colorectal cancer cells using nanobody-conjugated hyaluronic acid-modified mesoporous silica nanoparticles with pH-and redox-sensitivity. Mater Adv 3:4707–4717

    Article  CAS  Google Scholar 

  • Farsinejad S, Gheisary Z, Ebrahimi Samani S, Alizadeh AM (2015) Mitochondrial targeted peptides for cancer therapy. Tumour Biol 36:5715–5725. https://doi.org/10.1007/s13277-015-3719-1

    Article  CAS  PubMed  Google Scholar 

  • Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, Bray F (2021) Cancer statistics for the year 2020: an overview. Int J Cancer 149:778–789

    Article  CAS  Google Scholar 

  • Ferrero RL, Weinstein-Oppenheimer CR, Cabrera-Muñoz Z, Zúñiga-Hansen ME (2023) The antiproliferative activity of a mixture of peptide and oligosaccharide extracts obtained from defatted rapeseed meal on breast cancer cells and human fibroblasts. Foods 12:253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Food, D Administration, F approves lutetium Lu (2018) 177 dotatate for treatment of GEP-NETS. Accessed 26 Jan

  • Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20:122–128. https://doi.org/10.1016/j.drudis.2014.10.003

    Article  CAS  PubMed  Google Scholar 

  • Fu C, Yu L, Miao Y, Liu X, Yu Z, Wei M (2022) Peptide-drug conjugates (PDCs): a novel trend of research and development on targeted therapy, hype or hope? Acta Pharm Sin B 13:498–516

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaspar D, Freire JM, Pacheco TR, Barata JT, Castanho MA (2015) Apoptotic human neutrophil peptide-1 anti-tumor activity revealed by cellular biomechanics. Biochim Biophys Acta 1853:308–316. https://doi.org/10.1016/j.bbamcr.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  • Gentile M, Offidani M, Vigna E, Corvatta L, Recchia AG, Morabito L, Morabito F, Gentili S (2015) Ixazomib for the treatment of multiple myeloma. Expert Opin Investig Drugs 24:1287–1298

    Article  CAS  PubMed  Google Scholar 

  • Ginn C, Khalili H, Lever R, Brocchini S (2014) PEGylation and its impact on the design of new protein-based medicines. Future Med Chem 6:1829–1846

    Article  CAS  PubMed  Google Scholar 

  • Gish RG, Gordon SC, Nelson D, Rustgi V, Rios I (2009) A randomized controlled trial of thymalfasin plus transarterial chemoembolization for unresectable hepatocellular carcinoma. Hepatol Int 3:480–489

    Article  PubMed  PubMed Central  Google Scholar 

  • Glover S, Delaney M, Dematte C, Kornberg L, Frasco M, Tran-Son-Tay R, Benya RV (2004) Phosphorylation of focal adhesion kinase tyrosine 397 critically mediates gastrin-releasing peptide’s morphogenic properties. J Cell Physiol 199:77–88

    Article  CAS  PubMed  Google Scholar 

  • Gomes-Porras M, Cardenas-Salas J, Alvarez-Escola C (2020) Somatostatin analogs in clinical practice: a review. Int J Mol Sci 21:1682. https://doi.org/10.3390/ijms21051682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong J, Hu X, Zhang J, Du Y, Huang R, Teng Y, Tan W, Shen L (2021) Phase Ia study of CBP-1008, a bi-specific ligand drug conjugate targeting FRα and TRPV6, in patients with advanced solid tumors. Wolters Kluwer Health, Philadelphia

    Book  Google Scholar 

  • González-Cruz AO, Hernández-Juárez J, Ramírez-Cabrera MA, Balderas-Rentería I, Arredondo-Espinoza E (2022) Peptide-based drug-delivery systems: a new hope for improving cancer therapy. J Drug Deliv Sci Technol 72:103362. https://doi.org/10.1016/j.jddst.2022.103362

    Article  CAS  Google Scholar 

  • Grisoni F, Neuhaus CS, Hishinuma M, Gabernet G, Hiss JA, Kotera M, Schneider G (2019) De novo design of anticancer peptides by ensemble artificial neural networks. J Mol Model 25:1–10

    Article  CAS  Google Scholar 

  • Guo R, Liu J, Chai J, Gao Y, Abdel-Rahman MA, Xu X (2022) Scorpion peptide Smp24 exhibits a potent antitumor effect on human lung cancer cells by damaging the membrane and cytoskeleton in vivo and in vitro. Toxins (basel) 14:438

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson AB, Gottlieb RA (2007) Bcl-2 family members and apoptosis, taken to heart. Am J Physiol Cell Physiol 292:C45–C51. https://doi.org/10.1152/ajpcell.00229.2006

    Article  CAS  PubMed  Google Scholar 

  • Haggag YA, Donia AA, Osman MA, El-Gizawy SA (2018) Peptides as drug candidates: limitations and recent development perspectives. Biomed J 8:6659–6662. https://doi.org/10.26717/BJSTR.2018.08.001694

    Article  Google Scholar 

  • Hamley IW (2014) PEG–peptide conjugates. Biomacromol 15:1543–1559

    Article  CAS  Google Scholar 

  • Han Y-Y, Liu H-Y, Han D-J, Zong X-C, Zhang S-Q, Chen Y-Q (2013) Role of glycosylation in the anticancer activity of antibacterial peptides against breast cancer cells. Biochem Pharmacol 86:1254–1262

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  • Harris JM, Chess RB (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2:214–221

    Article  CAS  PubMed  Google Scholar 

  • Hayes HC, Luk LY, Tsai Y-H (2021) Approaches for peptide and protein cyclisation. Org Biomol Chem 19:3983–4001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heitmann JS, Bilich T, Tandler C, Nelde A, Maringer Y, Marconato M, Reusch J, Jäger S, Denk M et al (2022) A COVID-19 peptide vaccine for the induction of SARS-CoV-2 T cell immunity. Nature 601:617

    Article  CAS  PubMed  Google Scholar 

  • Hennrich U, Benešová M (2020) [68Ga] Ga-DOTA-TOC: the first FDA-approved 68Ga-radiopharmaceutical for PET imaging. Pharmaceuticals 13:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herndon TM, Deisseroth A, Kaminskas E, Kane RC, Koti KM, Rothmann MD, Habtemariam B, Bullock J, Bray JD et al (2013) US Food and Drug Administration Approval: carfilzomib for the treatment of multiple myeloma FDA approval summary of carfilzomib. Clin Cancer Res 19:4559–4563

    Article  CAS  PubMed  Google Scholar 

  • Hicks RP, AL Russell (2012) Application of unnatural amino acids to the de novo design of selective antibiotic peptides. Unnatl Amino Acids Methods Protoc 794:135–167. https://doi.org/10.1007/978-1-61779-331-8_9

  • Hilchie AL, Vale R, Zemlak TS, Hoskin DW (2013) Generation of a hematologic malignancy-selective membranolytic peptide from the antimicrobial core (RRWQWR) of bovine lactoferricin. Exp Mol Pathol 95:192–198. https://doi.org/10.1016/j.yexmp.2013.07.006

    Article  CAS  PubMed  Google Scholar 

  • Hilchie AL, Sharon AJ, Haney EF, Hoskin DW, Bally MB, Franco OL, Corcoran JA, Hancock RE (2016) Mastoparan is a membranolytic anti-cancer peptide that works synergistically with gemcitabine in a mouse model of mammary carcinoma. Biochim Biophys Acta (BBA) Biomembr 1858:3195–3204

    Article  CAS  Google Scholar 

  • Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta 1778:357–375. https://doi.org/10.1016/j.bbamem.2007.11.008

    Article  CAS  PubMed  Google Scholar 

  • Hu E, Wang D, Chen J, Tao X (2015) Novel cyclotides from Hedyotis diffusa induce apoptosis and inhibit proliferation and migration of prostate cancer cells. Int J Clin Exp Med 8:4059–4065

    PubMed  PubMed Central  Google Scholar 

  • Huang Y, Huang J, Chen Y (2010) Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 1:143–152. https://doi.org/10.1007/s13238-010-0004-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imanieh MH, Bagheri F, Alizadeh AM, Ashkani-Esfahani S (2014) Oxytocin has therapeutic effects on cancer, a hypothesis. Eur J Pharmacol 741:112–123

    Article  CAS  PubMed  Google Scholar 

  • Iversen TZ, Engell-Noerregaard L, Ellebaek E, Andersen R, Larsen SK, Bjoern J, Zeyher C, Gouttefangeas C, Thomsen BM et al (2014) Long-lasting disease stabilization in the absence of toxicity in metastatic lung cancer patients vaccinated with an epitope derived from indoleamine 2,3 dioxygenase. Clin Cancer Res 20:221–232. https://doi.org/10.1158/1078-0432.Ccr-13-1560

    Article  CAS  PubMed  Google Scholar 

  • Izci M, Maksoudian C, Manshian BB, Soenen SJ (2021) The use of alternative strategies for enhanced nanoparticle delivery to solid tumors. Chem Rev 121:1746–1803. https://doi.org/10.1021/acs.chemrev.0c00779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jabbour AM, Heraud JE, Daunt CP, Kaufmann T, Sandow J, O’Reilly LA, Callus BA, Lopez A, Strasser A et al (2009) Puma indirectly activates Bax to cause apoptosis in the absence of Bid or Bim. Cell Death Differ 16:555–563. https://doi.org/10.1038/cdd.2008.179

    Article  CAS  PubMed  Google Scholar 

  • Jacotot E, Costantini P, Laboureau E, Zamzami N, Susin SA, Kroemer G (1999) Mitochondrial membrane permeabilization during the apoptotic process. Ann N Y Acad Sci 887:18–30. https://doi.org/10.1111/j.1749-6632.1999.tb07919.x

    Article  CAS  PubMed  Google Scholar 

  • Jeon H, Le MT, Ahn B, Cho HS, Le VCQ, Yum J, Hong K, Kim JH, Song H et al (2019) Copy number variation of PR-39 cathelicidin, and identification of PR-35, a natural variant of PR-39 with reduced mammalian cytotoxicity. Gene 692:88–93. https://doi.org/10.1016/j.gene.2018.12.065

    Article  CAS  PubMed  Google Scholar 

  • Jiang R, Du X, Lönnerdal B (2014) Comparison of bioactivities of talactoferrin and lactoferrins from human and bovine milk. J Pediatr Gastroenterol Nutr 59:642–652

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Huang W, Sun X, Yang X, Wu Y, Shi J, Zheng J, Fan S, Liu J et al (2022) DTX-P7, a peptide–drug conjugate, is highly effective for non-small cell lung cancer. J Hematol Oncol 15:1–8

    Article  CAS  Google Scholar 

  • Jimenez JJ, DelCanto GM, Popovics P, Perez A, Vila Granda A, Vidaurre I, Cai RZ, Rick FG, Swords RT et al (2018) A new approach to the treatment of acute myeloid leukaemia targeting the receptor for growth hormone-releasing hormone. Br J Haematol 181:476–485

    Article  CAS  PubMed  Google Scholar 

  • Jin K, Sam IH, Po KHL, Da Lin EH, Ghazvini Zadeh S, Chen YY, Li X (2016) Total synthesis of teixobactin. Nat Commun 7:12394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin H, Wan C, Zou Z, Zhao G, Zhang L, Geng Y, Chen T, Huang A, Jiang F et al (2018) Tumor ablation and therapeutic immunity induction by an injectable peptide hydrogel. ACS Nano 12:3295–3310

    Article  CAS  PubMed  Google Scholar 

  • Ju X, Fan D, Kong L, Yang Q, Zhu Y, Zhang S, Su G, Li Y (2021) Antimicrobial peptide Brevinin-1RL1 from frog skin secretion induces apoptosis and necrosis of tumor cells. Molecules 26:2059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakde D, Jain D, Shrivastava V, Kakde R, Patil A (2011) Cancer therapeutics-opportunities, challenges and advances in drug delivery. J Appl Pharm Sci 2011:1–10

    Google Scholar 

  • Karagiannis ED, Popel AS (2008) Novel anti-angiogenic peptides derived From ELR-containing CXC chemokines. J Cell Biochem 104:1356–1363

    Article  CAS  PubMed  Google Scholar 

  • Kawanishi N, Sugimoto T, Shibata J, Nakamura K, Masutani K, Ikuta M, Hirai H (2006) Structure-based drug design of a highly potent CDK1, 2, 4, 6 inhibitor with novel macrocyclic quinoxalin-2-one structure. Bioorg Med Chem Lett 16:5122–5126

    Article  CAS  PubMed  Google Scholar 

  • Khamessi O, Ben Mabrouk H, ElFessi-Magouri R, Kharrat R (2018) RK1, the first very short peptide from Buthus occitanus tunetanus inhibits tumor cell migration, proliferation and angiogenesis. Biochem Biophys Res Commun 499:1–7. https://doi.org/10.1016/j.bbrc.2018.01.133

    Article  CAS  PubMed  Google Scholar 

  • Khawar IA, Kim JH, Kuh H-J (2015) Improving drug delivery to solid tumors: priming the tumor microenvironment. J Controll Rel 201:78–89

    Article  CAS  Google Scholar 

  • Khong H, Overwijk WW (2016) Adjuvants for peptide-based cancer vaccines. J Immunother Cancer 4:1–11

    Article  Google Scholar 

  • Kind F, Michalski K, Yousefzadeh-Nowshahr E, Meyer PT, Mix M, Ruf J (2022) Bone marrow impairment during early [177Lu] PSMA-617 radioligand therapy: haematotoxicity or tumour progression? EJNMMI Res 12:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koirala P, Chen SPR, Boer JC, Khalil ZG, Deceneux C, Goodchild G, Lu L, Faruck MO, Shalash AO et al (2023) Polymeric nanoparticles as a self-adjuvanting peptide vaccine delivery system: the role of shape. Adv Funct Mater 33:2209304

    Article  CAS  Google Scholar 

  • Kolate A, Baradia D, Patil S, Vhora I, Kore G, Misra A (2014) PEG—a versatile conjugating ligand for drugs and drug delivery systems. J Controll Rel 192:67–81

    Article  CAS  Google Scholar 

  • Kondo E, Iioka H, Saito K (2021) Tumor-homing peptide and its utility for advanced cancer medicine. Cancer Sci 112:2118–2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kordi M, Borzouyi Z, Chitsaz S, Asmaei M, Salami R, Tabarzad M (2022) Antimicrobial peptides with anticancer activity: today status, trends and their computational design. Arch Biochem Biophys 1:109484. https://doi.org/10.1016/j.abb.2022.109484

  • Kritzer JA, Stephens OM, Guarracino DA, Reznik SK, Schepartz A (2005) β-Peptides as inhibitors of protein–protein interactions. Biorg Med Chem 13:11–16

    Article  CAS  Google Scholar 

  • Kumar A, Sharma P, Arun A, Meena LS (2022) Development of peptide vaccine candidate using highly antigenic PE-PGRS family proteins to stimulate the host immune response against Mycobacterium tuberculosis H37Rv: an immuno-informatics approach. J Biomol Struct Dyn 41:1–23

    Google Scholar 

  • Kurrikoff K, Aphkhazava D, Langel Ü (2019) The future of peptides in cancer treatment. Curr Opin Pharm 47:27–32

    Article  CAS  Google Scholar 

  • Laakkonen P, Vuorinen K (2010) Homing peptides as targeted delivery vehicles. Integr Biol 2:326–337

    Article  CAS  Google Scholar 

  • Le Joncour V, Laakkonen P (2018) Seek & Destroy, use of targeting peptides for cancer detection and drug delivery. Biorg Med Chem 26:2797–2806

    Article  Google Scholar 

  • Lee A (2021) Loncastuximab tesirine: first approval. Drugs 81:1229–1233

    Article  CAS  PubMed  Google Scholar 

  • Lehmann J, Retz M, Sidhu SS, Suttmann H, Sell M, Paulsen F, Harder J, Unteregger G, Stöckle M (2006) Antitumor activity of the antimicrobial peptide magainin II against bladder cancer cell lines. Eur Urol 50:141–147. https://doi.org/10.1016/j.eururo.2005.12.043

    Article  CAS  PubMed  Google Scholar 

  • Leite ML, da Cunha NB, Costa FF (2018) Antimicrobial peptides, nanotechnology, and natural metabolites as novel approaches for cancer treatment. Pharmacol Ther 183:160–176

    Article  CAS  PubMed  Google Scholar 

  • Lerksuthirat T, On-yam P, Chitphuk S, Stitchantrakul W, Newburg DS, Morrow AL, Hongeng S, Chiangjong W, Chutipongtanate S (2023) ALA-A2 is a novel anticancer peptide inspired by alpha-lactalbumin: a discovery from a computational peptide library, in silico anticancer peptide screening and in vitro experimental validation. Glob Chall 7:2200213

    Article  PubMed  PubMed Central  Google Scholar 

  • Li ZJ, Cho CH (2012) Peptides as targeting probes against tumor vasculature for diagnosis and drug delivery. J Transl Med 10:1–9

    Article  Google Scholar 

  • Li S, Roberts RW (2003) A novel strategy for in vitro selection of peptide-drug conjugates. Chem Biol 10:233–239

    Article  CAS  PubMed  Google Scholar 

  • Li F, Tang S-C (2017) Targeting metastatic breast cancer with ANG1005, a novel peptide-paclitaxel conjugate that crosses the blood-brain-barrier (BBB), vol 4. Elsevier, Oxford, pp 1–3

    Google Scholar 

  • Li M, Shi HS, Zhang HL, Luo ZC, Wan Y, Lu L, Luo S-T, Yang L (2012) bFGF peptide combined with the pVAX-8CpG plasmid as adjuvant is a novel anticancer vaccine inducing effective immune responses against Lewis lung carcinoma. Mol Med Report 5:625–630

    Article  CAS  Google Scholar 

  • Li C, Zhao Y, Cheng J, Guo J, Zhang Q, Zhang X, Ren J, Wang F, Huang J et al (2019) A proresolving peptide nanotherapy for site-specific treatment of inflammatory bowel disease by regulating proinflammatory microenvironment and gut microbiota. Adv Sci. https://doi.org/10.1002/advs.201900610

    Article  Google Scholar 

  • Lindberg J, Nilvebrant J, Nygren P-Å, Lehmann F (2021) Progress and future directions with peptide-drug conjugates for targeted cancer therapy. Molecules 26:6042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lingasamy P, Teesalu T (2021) Homing peptides for cancer therapy. Bio-nanomedicine for cancer therapy. Springer, Cham, pp 29–48

    Chapter  Google Scholar 

  • Liu T-Y, Hussein WM, Giddam AK, Jia Z, Reiman JM, Zaman M, McMillan NA, Good MF, Monteiro MJ et al (2015) Polyacrylate-based delivery system for self-adjuvanting anticancer peptide vaccine. J Med Chem 58:888–896

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Zhang Y, Lei Y, Wang R, Zhan M, Liu J, An Y, Zhou Y, Zhan J et al (2022) Design and evaluation of a novel peptide–drug conjugate covalently targeting SARS-CoV-2 papain-like protease. J Med Chem 65:876–884

    Article  CAS  PubMed  Google Scholar 

  • Long T, Yang N, Zhou M, Chen D, Li Y, Li J, Tang Y, Liu Z, Li Z et al (2019) Clinical application of 18F-AlF-NOTA-octreotide PET/CT in combination with 18F-FDG PET/CT for imaging neuroendocrine neoplasms. Clin Nucl Med 44:452–458

    Article  PubMed  Google Scholar 

  • Lugano R, Ramachandran M, Dimberg A (2020) Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci 77:1745–1770

    Article  CAS  PubMed  Google Scholar 

  • Lv S, Sylvestre M, Prossnitz AN, Yang LF, Pun SH (2021) Design of polymeric carriers for intracellular peptide delivery in oncology applications. Chem Rev 121:11653–11698

    Article  CAS  PubMed  Google Scholar 

  • Mader JS, Hoskin DW (2006) Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin Investig Drugs 15:933–946

    Article  CAS  PubMed  Google Scholar 

  • Mahalaksmi B, Nandhini J (2023) An overview of various cancer treatments of melanoma and its diagnosis. J Coast Life Med 11:1404–1420

    Google Scholar 

  • Maia VS, Berzaghi R, Arruda DC, Machado FC, Loureiro LL, Melo PM, Morais AS, Budu A, Travassos LR (2022) PLP2-derived peptide Rb4 triggers PARP-1-mediated necrotic death in murine melanoma cells. Sci Rep 12:2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malesevic M, Strijowski U, Bächle D, Sewald N (2004) An improved method for the solution cyclization of peptides under pseudo-high dilution conditions. J Biotechnol 112:73–77

    Article  CAS  PubMed  Google Scholar 

  • Manion MK, Hockenbery DM (2003) Targeting BCL-2-related proteins in cancer therapy. Cancer Biol Ther 2:S105-114

    Article  CAS  PubMed  Google Scholar 

  • Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B (2017) The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull 7:339–348. https://doi.org/10.15171/apb.2017.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manzari MT, Shamay Y, Kiguchi H, Rosen N, Scaltriti M, Heller DA (2021) Targeted drug delivery strategies for precision medicines. Nat Rev Mater 6:351–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markham A (2021) Tisotumab vedotin: first approval. Drugs 81:2141–2147

    Article  CAS  PubMed  Google Scholar 

  • Marsh D, Jost M, Peggion C, Toniolo C (2007) Lipid chain-length dependence for incorporation of alamethicin in membranes: electron paramagnetic resonance studies on TOAC-spin labeled analogs. Biophys J 92:4002–4011. https://doi.org/10.1529/biophysj.107.104026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martel C, Huynhle H, Garnier A, Ventura-Clapier R, Brenner C (2012) Inhibition of the mitochondrial permeability transition for cytoprotection: direct versus indirect mechanisms. Biochem Res Int 2012:213403. https://doi.org/10.1155/2012/213403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinou JC, Youle RJ (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 21:92–101. https://doi.org/10.1016/j.devcel.2011.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateos M-V, Bladé J, Bringhen S, Ocio EM, Efebera Y, Pour L, Gay F, Sonneveld P, Gullbo J et al (2020) Melflufen: a peptide–drug conjugate for the treatment of multiple myeloma. J Clin Med 9:3120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsueda S, Itoh K, Shichijo S (2018) Antitumor activity of antibody against cytotoxic T lymphocyte epitope peptide of lymphocyte-specific protein tyrosine kinase. Cancer Sci 109:611–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauseth B, Camilio KA, Shi J, Hammarström CL, Rekdal Ø, Sveinbjørnsson B, Line P-D (2019) The novel oncolytic compound LTX-401 induces antitumor immune responses in experimental hepatocellular carcinoma. Mo Ther Oncolyt 14:139–148

    Article  CAS  Google Scholar 

  • Meyers PA (2009) Muramyl tripeptide (mifamurtide) for the treatment of osteosarcoma. Expert Rev Anticancer Ther 9:1035–1049

    Article  CAS  PubMed  Google Scholar 

  • Milla P, Dosio F, Cattel L (2012) PEGylation of proteins and liposomes: a powerful and flexible strategy to improve the drug delivery. Curr Drug Metab 13:105–119

    Article  CAS  PubMed  Google Scholar 

  • Mittendorf EA, Lu B, Melisko M, Price Hiller J, Bondarenko I, Brunt AM, Sergii G, Petrakova K, Peoples GE (2019) Efficacy and safety analysis of nelipepimut-S vaccine to prevent breast cancer recurrence: a randomized, multicenter, phase III clinical trial randomized phase III trial of nelipepimut-S in breast cancer. Clin Cancer Res 25:4248–4254

    Article  CAS  PubMed  Google Scholar 

  • Mochly-Rosen D, Qvit N (2010) Peptide inhibitors of protein-protein interactions. Chim Oggi/chem Today 28:14–16

    Google Scholar 

  • Mohapatra A, Rajendrakumar SK, Cherukula K, Park MS, Padmanaban S, Vasukuty A, Mohanty A, Lee JY, Bae WK et al (2023) A sugar modified amphiphilic cationic nano-adjuvant ceased tumor immune suppression and rejuvenated peptide vaccine induced antitumor immunity in cervical cancer. Biomater Sci 11:1853–1866. https://doi.org/10.1039/d2bm01715f

    Article  CAS  PubMed  Google Scholar 

  • Motavalli Khiavi F, Arashkia A, Golkar M, Nasimi M, Roohvand F, Azadmanesh K (2018) A dual-type L2 11–88 peptide from HPV types 16/18 formulated in Montanide ISA 720 induced strong and balanced Th1/Th2 immune responses, associated with high titers of broad spectrum cross-reactive antibodies in vaccinated mice. J Immunol Res 2018:9464186. https://doi.org/10.1155/2018/9464186

  • Muttenthaler M, King GF, Adams DJ, Alewood PF (2021) Trends in peptide drug discovery. Nat Rev Drug Discovery 20:309–325

    Article  CAS  PubMed  Google Scholar 

  • Narita Y, Arakawa Y, Yamasaki F, Nishikawa R, Aoki T, Kanamori M, Nagane M, Kumabe T, Hirose Y et al (2019) A randomized, double-blind, phase III trial of personalized peptide vaccination for recurrent glioblastoma. Neuro Oncol 21:348–359

    Article  PubMed  Google Scholar 

  • Nelde A, Rammensee H-G, Walz JS (2021) The peptide vaccine of the future. Mol Cell Proteom 20:1000022

    Article  Google Scholar 

  • Neuzil J, Dyason JC, Freeman R, Dong L-F, Prochazka L, Wang X-F, Scheffler I, Ralph SJ (2007) Mitocans as anti-cancer agents targeting mitochondria: lessons from studies with vitamin E analogues, inhibitors of complex II. J Bioenerg Biomembr 39:65–72

    Article  CAS  PubMed  Google Scholar 

  • Nguyen KT (2011) Targeted nanoparticles for cancer therapy: promises and challenge. J Nanomedic Nanotechnol 2:1000103e. https://doi.org/10.4172/2157-7439.1000103e

  • Nguyen M, Marcellus RC, Roulston A, Watson M, Serfass L, Murthy Madiraju SR, Goulet D, Viallet J, Belec L et al (2007) Small molecule obatoclax (GX15–070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci USA 104:19512–19517. https://doi.org/10.1073/pnas.0709443104

    Article  PubMed  PubMed Central  Google Scholar 

  • Noguchi M, Fujimoto K, Arai G, Uemura H, Hashine K, Matsumoto H, Fukasawa S, Kohjimoto Y, Nakatsu H et al (2021) A randomized phase III trial of personalized peptide vaccination for castration-resistant prostate cancer progressing after docetaxel. Oncol Rep 45:159–168

    Article  PubMed  Google Scholar 

  • Norberg E, Gogvadze V, Ott M, Horn M, Uhlen P, Orrenius S, Zhivotovsky B (2008) An increase in intracellular Ca2+ is required for the activation of mitochondrial calpain to release AIF during cell death. Cell Death Differ 15:1857–1864

    Article  CAS  PubMed  Google Scholar 

  • Nurdiani R, Vasiljevic T, Singh TK, Donkor ON, Prihanto AA, Kusuma TS (2022) Stability of an anticancer peptide isolated from Flathead by-products during in vitro gastrointestinal digestion. Funct Foods Health Dis 12:198–207

    Article  CAS  Google Scholar 

  • Otvos L Jr (2008) Peptide-based drug design: here and now. Methods Mol Biol 494:1–8. https://doi.org/10.1007/978-1-59745-419-3_1

    Article  CAS  PubMed  Google Scholar 

  • Oudart J-B, Villemin M, Brassart B, Sellier C, Terryn C, Dupont-Deshorgue A, Monboisse JC, Maquart F-X, Ramont L et al (2021) F4, a collagen XIX-derived peptide, inhibits tumor angiogenesis through αvβ3 and α5β1 integrin interaction. Cell Adh Migr 15:215–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan X, Xu J, Jia X (2020) Research progress evaluating the function and mechanism of anti-tumor peptides. Cancer Manag Res 12:397–409. https://doi.org/10.2147/cmar.s232708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasut G, Veronese F (2007) Polymer–drug conjugation, recent achievements and general strategies. Prog Polym Sci 32:933–961

    Article  CAS  Google Scholar 

  • Patel TK, Adhikari N, Amin SA, Biswas S, Jha T, Ghosh B (2021) Small molecule drug conjugates (SMDCs): an emerging strategy for anticancer drug design and discovery. New J Chem 45:5291–5321

    Article  CAS  Google Scholar 

  • Patil SM, Kunda NK (2022) Anticancer activity of D-LAK-120A, an antimicrobial peptide, in non-small cell lung cancer (NSCLC). Biochimie 201:7–17

    Article  CAS  PubMed  Google Scholar 

  • Peng X, Zhou C, Hou X, Liu Y, Wang Z, Peng X, Zhang Z, Wang R, Kong D (2018) Molecular characterization and bioactivity evaluation of two novel bombinin peptides from the skin secretion of Oriental fire-bellied toad, Bombina orientalis. Amino Acids 50:241–253. https://doi.org/10.1007/s00726-017-2509-z

    Article  CAS  PubMed  Google Scholar 

  • Pérez GV, Rosales M, Ramón AC, Rodríguez-Ulloa A, Besada V, González LJ, Aguilar D, Vázquez-Blomquist D, Falcón V et al (2023) CIGB-300 anticancer peptide differentially interacts with CK2 subunits and regulates specific signaling mediators in a highly sensitive large cell lung carcinoma cell model. Biomedicines 11:43

    Article  Google Scholar 

  • Pouillot F, Chomton M, Blois H, Courroux C, Noelig J, Bidet P, Bingen E, Bonacorsi S (2012) Efficacy of bacteriophage therapy in experimental sepsis and meningitis caused by a clone O25b: H4-ST131 Escherichia coli strain producing CTX-M-15. Antimicrob Agents Chemother 56:3568–3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raedler LA Padcev (Enfortumab Vedotin-ejfv) FDA approved for the treatment of Metastatic Urothelial Carcinoma. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-regular-approval-enfortumab-vedotin-ejfv-locally-advanced-or-metastatic-urothelial-cancer

  • Rahman MM, Masum MHU, Talukder A, Akter R (2023) An in silico reverse vaccinology approach to design a novel multiepitope peptide vaccine for non-small cell lung cancers. Inform Med Unlock 37:101169

    Article  Google Scholar 

  • Rahmani S, Maroufkhani M, Mohammadzadeh-Komuleh S, Khoubi-Arani Z (2022) Polymer nanocomposites for biomedical applications. Fundamentals of bionanomaterials. Elsevier, Oxford, pp 175–215

    Chapter  Google Scholar 

  • Rausch S, Gouttefangeas C, Hennenlotter J, Laske K, Walter K, Feyerabend S, Chandran PA, Kruck S, Singh-Jasuja H et al (2019) Results of a phase 1/2 study in metastatic renal cell carcinoma patients treated with a patient-specific adjuvant multi-peptide vaccine after resection of metastases. Eur Urol Focus 5:604–607

    Article  PubMed  Google Scholar 

  • Ray T, Kar D, Pal A, Mukherjee S, Das C, Pal A (2018) Molecular targeting of breast and colon cancer cells by PAR1 mediated apoptosis through a novel pro-apoptotic peptide. Apoptosis 23:679–694

    Article  CAS  PubMed  Google Scholar 

  • Regina A, Demeule M, Che C, Lavallee I, Poirier J, Gabathuler R, Béliveau R, Castaigne JP (2008) Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2. Br J Pharmacol 155:185–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren SX, Shen J, Cheng AS, Lu L, Chan RL, Li ZJ, Wang XJ, Wong CC, Zhang L et al (2013) FK-16 derived from the anticancer peptide LL-37 induces caspase-independent apoptosis and autophagic cell death in colon cancer cells. PLoS ONE 8:e63641. https://doi.org/10.1371/journal.pone.0063641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renukuntla J, Vadlapudi AD, Patel A, Boddu SH, Mitra AK (2013) Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm 447:75–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roudi R, Syn NL, Roudbary M (2017) Antimicrobial peptides as biologic and immunotherapeutic agents against cancer: a comprehensive overview. Front Immunol 8:1320. https://doi.org/10.3389/fimmu.2017.01320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell AL, Kennedy AM, Spuches AM, Gibson WS, Venugopal D, Klapper D, Srouji AH, Bhonsle JB, Hicks RP (2011) Determining the effect of the incorporation of unnatural amino acids into antimicrobial peptides on the interactions with zwitterionic and anionic membrane model systems. Chem Phys Lipids 164:740–758

    Article  CAS  PubMed  Google Scholar 

  • Salem AF, Wang S, Billet S, Chen J-F, Udompholkul P, Gambini L, Baggio C, Tseng H-R, Posadas EM et al (2018) Reduction of circulating cancer cells and metastases in breast-cancer models by a potent EphA2-agonistic peptide–drug conjugate. J Med Chem 61:2052–2061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandler U, Devary O, Braitbard O, Ohana J, Kass G, Rubinstein AM, Friedman ZY, Devary Y (2010) NEROFE—a novel human hormone-peptide with anti-cancer activity. J Exp Ther Oncol 8:327–339

    CAS  PubMed  Google Scholar 

  • Sarafraz-Yazdi E, Mumin S, Cheung D, Fridman D, Lin B, Wong L, Rosal R, Rudolph R, Frenkel M et al (2022) PNC-27, a chimeric p53-penetratin peptide binds to HDM-2 in a p53 peptide-like structure, induces selective membrane-pore formation and leads to cancer cell lysis. Biomedicines 10:945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena M, Burke A, Pavlick A, Blazquez A, Gimenez G, Meseck M, Donovan M, Rodriguez D, Castillo-Martin M et al (2022) Abstract CT108: immunogenicity of poly-ICLC matured dendritic cells as an adjuvant for NY-ESO-1 and Melan-A-MART-1 peptide vaccination compared to Montanide® ISA-51 VG, in study subjects with melanoma in complete clinical remission but at high risk of disease recurrence. Cancer Res 82:CT108–CT108

    Article  Google Scholar 

  • Schuhmacher J, Heidu S, Balchen T, Richardson JR, Schmeltz C, Sonne J, Schweiker J, Rammensee HG, Thor Straten P et al (2020) Vaccination against RhoC induces long-lasting immune responses in patients with prostate cancer: results from a phase I/II clinical trial. J Immunother Cancer. https://doi.org/10.1136/jitc-2020-001157

    Article  PubMed  PubMed Central  Google Scholar 

  • Scott CP, Abel-Santos E, Wall M, Wahnon DC, Benkovic SJ (1999) Production of cyclic peptides and proteins in vivo. Proc Natl Acad Sci 96:13638–13643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selvarathinam K, Subramani P, Thekkumalai M, Vilwanathan R, Selvarajan R, Abia ALK (2023) Wnt signaling pathway collapse upon β-catenin destruction by a novel antimicrobial peptide SKACP003: unveiling the molecular mechanism and genetic activities using breast cancer cell lines. Molecules 28:930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo Y-W, Woo H-N, Piya S, Moon AR, Oh J-W, Yun C-W, Kim K-K, Min J-Y, Jeong S-Y et al (2009) The cell death–inducing activity of the peptide containing Noxa mitochondrial-targeting domain Is associated with calcium release. Cancer Res 69:8356–8365

    Article  CAS  PubMed  Google Scholar 

  • Shao N, Yuan L, Ma P, Zhou M, Xiao X, Cong Z, Wu Y, Xiao G, Fei J et al (2022) Heterochiral β-peptide polymers combating multidrug-resistant cancers effectively without inducing drug resistance. J Am Chem Soc 144:7283–7294

    Article  CAS  PubMed  Google Scholar 

  • Shima H, Tsurita G, Wada S, Hirohashi Y, Yasui H, Hayashi H, Miyakoshi T, Watanabe K, Murai A et al (2019) Randomized phase II trial of survivin 2B peptide vaccination for patients with HLA-A24-positive pancreatic adenocarcinoma. Cancer Sci 110:2378–2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoari A, Khodabakhsh F, Cohan RA, Salimian M, Karami E (2021) Anti-angiogenic peptides application in cancer therapy; a review. Res Pharm Sci 16:559–574

    Article  PubMed  PubMed Central  Google Scholar 

  • Si M, Xu Q, Jiang L, Huang H (2016) SpyTag/SpyCatcher cyclization enhances the thermostability of firefly luciferase. PLoS ONE 11:e0162318

    Article  PubMed  PubMed Central  Google Scholar 

  • Siegel R, Naishadham D, Jemal AA (2013) Analysis of fiducials implanted during EUS for patients with localized rectal cancer receiving high-dose rate endorectal brachytherapy. Gastrointest Endosc 63:11–30

    Google Scholar 

  • Siegel RL, Miller KD, Wagle NS, Jemal A (2023) Cancer statistics, 2023. CA Cancer J Clin 73:17–48

    Article  PubMed  Google Scholar 

  • Sioud M (2019) Phage display libraries: from binders to targeted drug delivery and human therapeutics. Mol Biotechnol 61:286–303. https://doi.org/10.1007/s12033-019-00156-8

    Article  CAS  PubMed  Google Scholar 

  • Soellner MB, Tam A, Raines RT (2006) Staudinger ligation of peptides at non-glycyl residues. J Org Chem 71:9824–9830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sok M, Šentjurc M, Schara M (1999) Membrane fluidity characteristics of human lung cancer. Cancer Lett 139:215–220

    Article  CAS  PubMed  Google Scholar 

  • Soon TN, Chia AY, Yap WH, Tang Y-Q (2020) Anticancer mechanisms of bioactive peptides. Protein Pept Lett 27:823–830

    Article  CAS  PubMed  Google Scholar 

  • Sotomayor S, Muñoz-Moreno L, Carmena MJ, Schally AV, Sánchez-Chapado M, Prieto JC, Bajo AM (2010) Regulation of HER expression and transactivation in human prostate cancer cells by a targeted cytotoxic bombesin analog (AN-215) and a bombesin antagonist (RC-3095). Int J Cancer 127:1813–1822

    Article  CAS  PubMed  Google Scholar 

  • Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, Dayton BD, Ding H, Enschede SH et al (2013) ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med 19:202–208

    Article  CAS  PubMed  Google Scholar 

  • Spicer J, Marabelle A, Baurain JF, Jebsen NL, Jossang DE, Awada A, Kristeleit R, Loirat D, Lazaridis G et al (2021) Safety, antitumor activity, and T-cell responses in a dose-ranging phase I trial of the oncolytic peptide LTX-315 in patients with solid tumors. Clin Cancer Res 27:2755–2763. https://doi.org/10.1158/1078-0432.CCR-20-3435

    Article  CAS  PubMed  Google Scholar 

  • Sun L (2013) Peptide-based drug development. Mod Chem Appl 1:1–2

    Article  CAS  Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249

    Article  PubMed  Google Scholar 

  • Szewczyk A, Wojtczak L (2002) Mitochondria as a pharmacological target. Pharmacol Rev 54:101–127

    Article  CAS  PubMed  Google Scholar 

  • Talebi S, Bolhassani A, Azad TM, Arashkia A, Modaresi MH (2017) Immuno-stimulating peptide derived from HMGB1 is more effective than the N-terminal domain of Gp96 as an endogenous adjuvant for improvement of protein vaccines. Protein Pept Lett 24:190–196

    Article  CAS  PubMed  Google Scholar 

  • Tan J, Huang J, Huang Y, Chen Y (2014) Effects of single amino acid substitution on the biophysical properties and biological activities of an amphipathic α-helical antibacterial peptide against Gram-negative bacteria. Molecules 19:10803–10817

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang TS, Cardella D, Lander AJ, Li X, Escudero JS, Tsai Y-H, Luk LY (2020) Use of an asparaginyl endopeptidase for chemo-enzymatic peptide and protein labeling. Chem Sci 11:5881–5888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang M, Cai J-H, Diao H-Y, Guo W-M, Yang X, Xing S (2022) The progress of peptide vaccine clinical trials in gynecologic oncology. Hum Vaccin Immunother 18:2062982

    Article  PubMed  PubMed Central  Google Scholar 

  • Terrettaz S, Mayer M, Vogel H (2003) Highly electrically insulating tethered lipid bilayers for probing the function of ion channel proteins. Langmuir 19:5567–5569. https://doi.org/10.1021/la034197v

    Article  CAS  Google Scholar 

  • Thomas FC, Taskar K, Rudraraju V, Goda S, Thorsheim HR, Gaasch JA, Mittapalli RK, Palmieri D, Steeg PS et al (2009) Uptake of ANG1005, a novel paclitaxel derivative, through the blood-brain barrier into brain and experimental brain metastases of breast cancer. Pharm Res 26:2486–2494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmons PB, Hewage CM (2021) Conformation and membrane interaction studies of the potent antimicrobial and anticancer peptide palustrin-Ca. Sci Rep 11:1–13

    Article  Google Scholar 

  • Tornesello AL, Borrelli A, Buonaguro L, Buonaguro FM, Tornesello ML (2020) Antimicrobial peptides as anticancer agents: functional properties and biological activities. Molecules. https://doi.org/10.3390/molecules25122850

    Article  PubMed  PubMed Central  Google Scholar 

  • Touati J, Angelini A, Hinner MJ, Heinis C (2011) Enzymatic cyclisation of peptides with a transglutaminase. ChemBioChem 12:38–42

    Article  CAS  PubMed  Google Scholar 

  • Tyagi A, Tuknait A, Anand P, Gupta S, Sharma M, Mathur D, Joshi A, Singh S, Gautam A et al (2015) CancerPPD: a database of anticancer peptides and proteins. Nucleic Acids Res 43:D837–D843

    Article  CAS  PubMed  Google Scholar 

  • Ulapane KR, Kopec BM, Moral ME, Siahaan TJ (2017) Peptides and drug delivery. Peptides and peptide-based biomaterials and their biomedical applications. Springer, Berlin, pp 167–184

    Chapter  Google Scholar 

  • Urruticoechea A, Alemany R, Balart J, Villanueva A, Vinals F, Capella G (2010) Recent advances in cancer therapy: an overview. Curr Pharm Des 16:3–10

    Article  CAS  PubMed  Google Scholar 

  • Usmani SS, Bedi G, Samuel JS, Singh S, Kalra S, Kumar P, Ahuja AA, Sharma M, Gautam A et al (2017) THPdb: database of FDA-approved peptide and protein therapeutics. PLoS ONE 12:e0181748. https://doi.org/10.1371/journal.pone.0181748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Kraan MI, Groenink J, Nazmi K, Veerman EC, Bolscher JG, Nieuw Amerongen AV (2004) Lactoferrampin: a novel antimicrobial peptide in the N1-domain of bovine lactoferrin. Peptides 25:177–183. https://doi.org/10.1016/j.peptides.2003.12.006

    Article  CAS  PubMed  Google Scholar 

  • Velayutham M, Guru A, Gatasheh MK, Hatamleh AA, Juliet A, Arockiaraj J (2022) Molecular docking of SA11, RF13 and DI14 peptides from vacuolar protein sorting associated protein 26B against cancer proteins and in vitro investigation of its anticancer potency in Hep-2 cells. Int J Pept Res Ther 28:87

    Article  CAS  Google Scholar 

  • Veldhuizen EJ, Schneider VA, Agustiandari H, van Dijk A, Tjeerdsma-van Bokhoven JL, Bikker FJ, Haagsman HP (2014) Antimicrobial and immunomodulatory activities of PR-39 derived peptides. PLoS ONE 9:e95939. https://doi.org/10.1371/journal.pone.0095939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venugopal D, Klapper D, Srouji AH, Bhonsle JB, Borschel R, Mueller A, Russell AL, Williams BC, Hicks RP (2010) Novel antimicrobial peptides that exhibit activity against select agents and other drug resistant bacteria. Biorg Med Chem 18:5137–5147

    Article  CAS  Google Scholar 

  • Verma S, Sugadev R, Kumar A, Chandna S, Ganju L, Bansal A (2018) Multi-epitope DnaK peptide vaccine against S. Typhi: an in silico approach. Vaccine 36:4014–4022

    Article  CAS  PubMed  Google Scholar 

  • Vieira AT, Galvão I, Macia LM, Sernaglia EM, Vinolo MAR, Garcia CC, Tavares LP, Amaral FA, Sousa LP et al (2017) Dietary fiber and the short-chain fatty acid acetate promote resolution of neutrophilic inflammation in a model of gout in mice. J Leukocyte Biol 101:275–284. https://doi.org/10.1189/jlb.3A1015-453RRR

    Article  CAS  PubMed  Google Scholar 

  • Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M (2010) Synthetic therapeutic peptides: science and market. Drug Discov Today 15:40–56. https://doi.org/10.1016/j.drudis.2009.10.009

    Article  CAS  PubMed  Google Scholar 

  • Walensky LD, Kung AL, Escher I, Malia TJ, Barbuto S, Wright RD, Wagner G, Verdine GL, Korsmeyer SJ (2004) Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305:1466–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Guo D, He J, Song L, Chen H, Zhang Z, Tan N (2019) Inhibition of fatty acid synthesis arrests colorectal neoplasm growth and metastasis: anti-cancer therapeutical effects of natural cyclopeptide RA-XII. Biochem Biophys Res Commun 512:819–824. https://doi.org/10.1016/j.bbrc.2019.03.088

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Huang L, Li R, Wang Y, Wu X, Shang D (2021a) Synergistic therapy of doxorubicin with cationic anticancer peptide L-K6 reverses multidrug resistance in MCF-7/ADR cancer cells in vitro via P-glycoprotein inhibition. Int J Pept Res Ther 27:2291–2301

    Article  CAS  Google Scholar 

  • Wang M-D, Hou D-Y, Lv G-T, Li R-X, Hu X-J, Wang Z-J, Zhang N-Y, Yi L, Xu W-H et al (2021b) Targeted in situ self-assembly augments peptide drug conjugate cell-entry efficiency. Biomaterials 278:121139

    Article  CAS  PubMed  Google Scholar 

  • Ward RA, Fawell S, Floc’h N, Flemington V, McKerrecher D, Smith PD (2020) Challenges and opportunities in cancer drug resistance. Chem Rev 121:3297–3351

    Article  PubMed  Google Scholar 

  • White BH, Whalen K, Kriksciukaite K, Alargova R, Au Yeung T, Bazinet P, Brockman A, DuPont M, Oller H et al (2019) Discovery of an SSTR2-targeting maytansinoid conjugate (PEN-221) with potent activity in vitro and in vivo. J Med Chem 62:2708–2719

    Article  CAS  PubMed  Google Scholar 

  • Whittaker SJ, Demierre M-F, Kim EJ, Rook AH, Lerner A, Duvic M, Scarisbrick J, Reddy S, Robak T et al (2010) Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol 28:4485–4491

    Article  CAS  PubMed  Google Scholar 

  • Wilson P, Anastasaki A, Owen MR, Kempe K, Haddleton DM, Mann SK, Johnston AP, Quinn JF, Whittaker MR et al (2015) Organic arsenicals as efficient and highly specific linkers for protein/peptide–polymer conjugation. J Am Chem Soc 137:4215–4222

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Huang J (2018) Optimization of protein and peptide drugs based on the mechanisms of kidney clearance. Protein Pept Lett 25:514–521

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Zhao Y, Ren H, Si X, Zhang L, Wang C (2016) Construction of cationic anticancer peptide Temporin-1 CEa liposomes and evaluation of anti-breast cancer activity in vitro. Chin J Biochem Pharm 22–26

  • Wu Z-Z, Ding G-F, Huang F-F, Yang Z-S, Yu F-M, Tang Y-P, Jia Y-L, Zheng Y-Y, Chen R (2018) Anticancer activity of anthopleura anjunae oligopeptides in prostate cancer DU-145 cells. Mar Drugs 16:125

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie X, Zhou W, Hu Y, Chen Y, Zhang H, Li Y (2018) A dual-function epidermal growth factor receptor pathway substrate 8 (Eps8)-derived peptide exhibits a potent cytotoxic T lymphocyte-activating effect and a specific inhibitory activity. Cell Death Dis 9:379. https://doi.org/10.1038/s41419-018-0420-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie M, Liu D, Yang Y (2020a) Anti-cancer peptides: classification, mechanism of action, reconstruction and modification. Open Biol 10:200004. https://doi.org/10.1098/rsob.200004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie M, Liu D, Yang Y (2020b) Anti-cancer peptides: classification, mechanism of action, reconstruction and modification. Open Biol 10:200004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang B-B, Lum PK, Hayashi MM, Roskos LK (2004) Polyethylene glycol modification of filgrastim results in decreased renal clearance of the protein in rats. J Pharm Sci 93:1367–1373

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Good D, Mosaiab T (2020) Significance of LL-37 on immunomodulation and disease outcome

  • Yang Y, Chen H-Y, Hao H, Wang K-J (2022) The anticancer activity conferred by the mud crab antimicrobial peptide scyreprocin through apoptosis and membrane disruption. Int J Mol Sci 23:5500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin H, Fu X, Gao H, Gao H, Ma Y, Chen X, Zhang X, Du S-S, Qi Y-K (2022) Hybrid peptide NTP-217 triggers ROS-mediated rapid necrosis in liver cancer cells by induction of mitochondrial leakage. Front Oncol 12:1028600

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Mai Y, Wei Y, Yu N, Gao T, Yang J (2023) Therapeutic potential of tolerance-based peptide vaccines in autoimmune diseases. Int Immunopharmacol 116:109740

    Article  CAS  PubMed  Google Scholar 

  • Zaman R, Islam RA, Ibnat N, Othman I, Zaini A, Lee CY, Chowdhury EH (2019) Current strategies in extending half-lives of therapeutic proteins. J Controll Rel 301:176–189

    Article  CAS  Google Scholar 

  • Zelba H, McQueeney A, Rabsteyn A, Bartsch O, Kyzirakos C, Kayser S, Harter J, Latzer P, Hadaschik D et al (2022) Adjuvant treatment for breast cancer patients using individualized neoantigen peptide vaccination—a retrospective observation. Vaccines 434:1882

    Article  Google Scholar 

  • Zeng J, Wang J, Wu J, Deng R, Zhang L, Chen Q, Wang J, Jin X, Gui S et al (2023) A novel antimicrobial peptide M1–8 targets the lysosomal pathway to inhibit autolysosome formation and promote apoptosis in liver cancer cells. J Cell Mol Med 27(3):340–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X-X, Eden HS, Chen X (2012) Peptides in cancer nanomedicine: drug carriers, targeting ligands and protease substrates. J Controll Rel 159:2–13

    Article  CAS  Google Scholar 

  • Zhang G, Liu S, Liu Y, Wang F, Ren J, Gu J, Zhou K, Shan B (2014a) A novel cyclic pentapeptide, H-10, inhibits B16 cancer cell growth and induces cell apoptosis. Oncol Lett 8:248–252. https://doi.org/10.3892/ol.2014.2121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Wang H, Ma Z, Wu B (2014b) Effects of pharmaceutical PEGylation on drug metabolism and its clinical concerns. Expert Opin Drug Metab Toxicol 10:1691–1702

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Sun Y, Kang Y, Shang D (2021) Antimicrobial peptide temporin-1CEa isolated from frog skin secretions inhibits the proinflammatory response in lipopolysaccharide-stimulated RAW264. 7 murine macrophages through the MyD88-dependent signaling pathway. Mol Immunol 132:227–235

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Chen W-Q, Zhang S-Q, Bai J-X, Lau C-L, Sze SC-W, Yung KK-L, Ko JK-S (2022) The human cathelicidin peptide LL-37 inhibits pancreatic cancer growth by suppressing autophagy and reprogramming of the tumor immune microenvironment. Front Pharmacol 13:906625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Sood R, Jutila A, Bose S, Fimland G, Nissen-Meyer J, Kinnunen PK (2006) Interaction of the antimicrobial peptide pheromone Plantaricin A with model membranes: implications for a novel mechanism of action. Biochim Biophys Acta 1758:1461–1474. https://doi.org/10.1016/j.bbamem.2006.03.037

    Article  CAS  PubMed  Google Scholar 

  • Zoa AB, Yang Y-j, Huang W-j, Ndoadoumgue AL, Tian Y-t (2022) The role of short peptides in tumor angiogenesis. 赣南医学院学报 42:1–10. https://doi.org/10.3969/j.issn.1001-5779.2022.06.001

Download references

Acknowledgements

Authors wish to thank Molecular Medicine Department and also Pharmaceutical Sciences Research Center of Shiraz University of Medical Sciences.

Funding

The authors declare that no funds or grants were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

VAP presented the idea. YN prepared the figures. The article was jointly written by VAP, KHRJ, MSh, YN, and AT under the supervision of AT, VR, and JF. AT drafted the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Vahid Razban or Jafar Fallahi.

Ethics declarations

Conflict of interest

All authors declare that they have no competing interest in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alamdari-palangi, V., Jaberi, K.R., Shahverdi, M. et al. Recent advances and applications of peptide–agent conjugates for targeting tumor cells. J Cancer Res Clin Oncol 149, 15249–15273 (2023). https://doi.org/10.1007/s00432-023-05144-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-023-05144-9

Keywords

Navigation