Skip to main content

Advertisement

Log in

Genetic analysis of familial predisposition in the pathogenesis of malignant pleural mesothelioma

  • Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Mesothelioma is the primary tumor of the mesothelial cell membrane. The most important etiology is asbestos exposure. The development of malignant mesothelioma in very few of the population exposed to asbestos and its frequent occurrence in some families may be significant in terms of genetic predisposition. Again, the presence of relatives with mesothelioma who did not have asbestos contact strengthens this argument. This disease, which has limited treatment options and has a poor prognosis, revealing a genetic predisposition, if any, may prolong survival with early diagnosis and effective treatment.

Methods

Based on the genetic predisposition idea, we diagnosed and followed a total of ten individuals of relatives with mesothelioma. DNA was isolated from peripheral blood and whole genome sequencing analysis was done. Common gene mutations in ten individuals were filtered using bioinformatics. After this filter, from the remaining variants, very rare in the population and damaging mutations are selected.

Results

Eight thousand six hundred and twenty-two common variants have been identified in ten individuals with this analysis. In total, 120 variants were found on 37 genes in 15 chromosomes. These genes are PIK3R4, SLC25A5, ITGB6, PLK2, RAD17, HLA-B, HLA-DRB1, HLA-DQB1, GRM, IL20RA, MAP3K7, RIPK2, and MUC16.

Conclusion

Our finding, PIK3R4 gene, is directly associated with mesothelioma development. Twelve genes, which are associated with cancer, were detected in literature. Additional studies, which scan first-degree relatives of individual, are needed to find the specific gene region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All research data available at the Eskisehir Osmangazi University Hospital, Department of Neurology. The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

References

  • Adams S, Valchanova RS, Munz B (2010) RIP2: a novel player in the regulation of keratinocyte proliferation and cutaneous wound repair? Exp Cell Res 316(5):728–736

    CAS  PubMed  Google Scholar 

  • Aithal A et al (2018) MUC16 as a novel target for cancer therapy. Expert Opin Ther Targets 22(8):675–686

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ak G et al (2009) Prognostic factors according to the treatment schedule in malignant pleural mesothelioma. J Thorac Oncol 4(11):1425–1430

    PubMed  Google Scholar 

  • Aptsiauri N et al (2007) Role of altered expression of HLA class I molecules in cancer progression. In: Ren T (ed) Immune-mediated diseases. Springer, pp 123–131

    Google Scholar 

  • Bao S et al (2001) ATR/ATM-mediated phosphorylation of human Rad17 is required for genotoxic stress responses. Nature 411(6840):969–974

    CAS  PubMed  Google Scholar 

  • Batirel HF et al (2016) Adoption of pleurectomy and decortication for malignant mesothelioma leads to similar survival as extrapleural pneumonectomy. J Thorac Cardiovasc Surg 151(2):478–484

    PubMed  Google Scholar 

  • Becklake M, Bagatin E, Neder JA (2007) Asbestos-related diseases of the lungs and pleura: uses, trends and management over the last century [State of the Art Series. Occupational lung disease in high-and low-income countries, Edited by M. Chan-Yeung. Number 3 in the series]. Int J Tuberc Lung Dis 11(4):356–369

    CAS  PubMed  Google Scholar 

  • Bellacosa A et al (2005) Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv Cancer Res 94:29–86

    CAS  PubMed  Google Scholar 

  • Bott M et al (2011) The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21. 1 losses in malignant pleural mesothelioma. Nat Genet 43(7):668–672

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burns TF et al (2003) Silencing of the novel p53 target gene Snk/Plk2 leads to mitotic catastrophe in paclitaxel (taxol)-exposed cells. Mol Cell Biol 23(16):5556–5571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carbone M, Bedrossian CW (2006) The pathogenesis of mesothelioma. In Seminars in diagnostic pathology. Elsevier

  • Carbone M et al (2020) Tumour predisposition and cancer syndromes as models to study gene–environment interactions. Nat Rev Cancer 20(9):533–549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chada S et al (2005) mda-7/IL24 kills pancreatic cancer cells by inhibition of the Wnt/PI3K signaling pathways: identification of IL-20 receptor-mediated bystander activity against pancreatic cancer. Mol Ther 11(5):724–733

    CAS  PubMed  Google Scholar 

  • Chevrollier A et al (2005) ANT2 isoform required for cancer cell glycolysis. J Bioenerg Biomembr 37(5):307–317

    CAS  PubMed  Google Scholar 

  • Ferrante D et al (2020) Mortality and mesothelioma incidence among chrysotile asbestos miners in Balangero, Italy: a cohort study. Am J Ind Med 63(2):135–145

    CAS  PubMed  Google Scholar 

  • Griffiths D et al (1995) Fission yeast rad17: a homologue of budding yeast RAD24 that shares regions of sequence similarity with DNA polymerase accessory proteins. EMBO J 14(23):5812–5823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grunewald J et al (2016) T-cell receptor–HLA-DRB1 associations suggest specific antigens in pulmonary sarcoidosis. Eur Respir J 47(3):898–909

    CAS  PubMed  Google Scholar 

  • Gubbels JA et al (2006) Mesothelin-MUC16 binding is a high affinity, N-glycan dependent interaction that facilitates peritoneal metastasis of ovarian tumors. Mol Cancer 5(1):1–15

    Google Scholar 

  • Illei PB et al (2003) Homozygous deletion of CDKN2A and codeletion of the methylthioadenosine phosphorylase gene in the majority of pleural mesotheliomas. Clin Cancer Res 9(6):2108–2113

    CAS  PubMed  Google Scholar 

  • Kan Z et al (2010) Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466(7308):869–873

    CAS  PubMed  Google Scholar 

  • Karin M (2006) Nuclear factor-κB in cancer development and progression. Nature 441(7092):431–436

    CAS  PubMed  Google Scholar 

  • Le Bras M et al (2006) Chemosensitization by knockdown of adenine nucleotide translocase-2. Can Res 66(18):9143–9152

    Google Scholar 

  • Lee AY et al (2004) Dickkopf-1 antagonizes Wnt signaling independent of β-catenin in human mesothelioma. Biochem Biophys Res Commun 323(4):1246–1250

    CAS  PubMed  Google Scholar 

  • Lydall D, Weinert T (1997) G2/M checkpoint genes of Saccharomyces cerevisiae: further evidence for roles in DNA replication and/or repair. Mol Gen Genet MGG 256(6):638–651

    CAS  PubMed  Google Scholar 

  • Machida YJ et al (2009) The deubiquitinating enzyme BAP1 regulates cell growth via interaction with HCF-1. J Biol Chem 284(49):34179–34188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mikami I et al (2010) Inhibition of activated phosphatidylinositol 3-kinase/AKT pathway in malignant pleural mesothelioma leads to G1 cell cycle arrest. Oncol Rep 24:1677–1681. https://doi.org/10.3892/or_00001033

    Article  CAS  PubMed  Google Scholar 

  • Murali R, Wiesner T, Scolyer RA (2013) Tumours associated with BAP1 mutations. Pathology 45(2):116–126

    CAS  PubMed  Google Scholar 

  • Namkoong J et al (2007) Metabotropic glutamate receptor 1 and glutamate signaling in human melanoma. Can Res 67(5):2298–2305

    CAS  Google Scholar 

  • Parker AE et al (1998) Identification of a human homologue of the Schizosaccharomyces pombe rad17+ checkpoint gene. J Biol Chem 273(29):18340–18346

    CAS  PubMed  Google Scholar 

  • Passweg JR et al (2007) HLA and KIR polymorphisms affect NK-cell anti-tumor activity. Trends Immunol 28(10):437–441

    CAS  PubMed  Google Scholar 

  • Pollock PM et al (2003) Melanoma mouse model implicates metabotropic glutamate signaling in melanocytic neoplasia. Nat Genet 34(1):108–112

    CAS  PubMed  Google Scholar 

  • Robinson BW, Musk AW, Lake RA (2005) Malignant mesothelioma. Lancet 366(9483):397–408

    CAS  PubMed  Google Scholar 

  • Robinson J et al (2009) The imgt/hla database. Nucleic Acids Res 37(Suppl_1):1013–1017

    Google Scholar 

  • Rusch A et al (2015) Prevalence of BRCA-1 associated protein 1 germline mutation in sporadic malignant pleural mesothelioma cases. Lung Cancer 87(1):77–79

    PubMed  Google Scholar 

  • Schönherr M et al (2014) Genomewide RNA i screen identifies protein kinase C β and new members of mitogen-activated protein kinase pathway as regulators of melanoma cell growth and metastasis. Pigment Cell Melanoma Res 27(3):418–430

    PubMed  Google Scholar 

  • Sekido Y (2013) Molecular pathogenesis of malignant mesothelioma. Carcinogenesis 34(7):1413–1419

    CAS  PubMed  Google Scholar 

  • Swarts DR et al (2013) An exploration of pathways involved in lung carcinoid progression using gene expression profiling. Carcinogenesis 34(12):2726–2737

    CAS  PubMed  Google Scholar 

  • Tessema M et al (2008) Promoter methylation of genes in and around the candidate lung cancer susceptibility locus 6q23-25. Can Res 68(6):1707–1714

    CAS  Google Scholar 

  • Testa JR et al (2011) Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet 43(10):1022–1025

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thurneysen C et al (2009) Functional inactivation of NF2/merlin in human mesothelioma. Lung Cancer 64(2):140–147

    PubMed  Google Scholar 

  • Ugurluer G et al (2016) Genome-based mutational analysis by next generation sequencing in patients with malignant pleural and peritoneal mesothelioma. Anticancer Res 36(5):2331–2338

    CAS  PubMed  Google Scholar 

  • Warnke S et al (2004) Polo-like kinase-2 is required for centriole duplication in mammalian cells. Curr Biol 14(13):1200–1207

    CAS  PubMed  Google Scholar 

  • Weder W et al (2007) Multicenter trial of neo-adjuvant chemotherapy followed by extrapleural pneumonectomy in malignant pleural mesothelioma. Ann Oncol 18(7):1196–1202

    CAS  PubMed  Google Scholar 

  • Yang H et al (2006) TNF-α inhibits asbestos-induced cytotoxicity via a NF-κB-dependent pathway, a possible mechanism for asbestos-induced oncogenesis. Proc Natl Acad Sci 103(27):10397–10402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshikawa Y et al (2012) Frequent inactivation of the BAP1 gene in epithelioid-type malignant mesothelioma. Cancer Sci 103(5):868–874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao M et al (2008) Downregulation of RAD17 in head and neck cancer. Head Neck 30(1):35–42

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was partly supported by the Research Fund of Eskişehir Osmangazi University.

Author information

Authors and Affiliations

Authors

Contributions

MA, GA, MM: conceptualization, data curation, formal analysis MA, GA, MM: investigation methodology, project administration resources MA, GA, MM: software GA, MM, ED: supervision, validation MA, GA: writing—original draft writing—review and editing.

Corresponding author

Correspondence to Muhittin Akarsu.

Ethics declarations

Conflict of interest

All the authors declare have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akarsu, M., Ak, G., Dündar, E. et al. Genetic analysis of familial predisposition in the pathogenesis of malignant pleural mesothelioma. J Cancer Res Clin Oncol 149, 7767–7778 (2023). https://doi.org/10.1007/s00432-023-04730-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-023-04730-1

Keywords

Navigation