Skip to main content

Advertisement

Log in

The emerging roles and potential applications of circular RNAs in ovarian cancer: a comprehensive review

  • Review
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Ovarian cancer (OC) is among the most common human malignancies and the first cause of deaths among gynecologic cancers. Early diagnosis can help improving prognosis in those patients, and accordingly exploring novel molecular mechanisms may lead to find therapeutic targets. Circular RNAs (circRNAs) comprise a group of non-coding RNAs in multicellular organisms, which are identified with characteristic circular structure. CircRNAs have been found with substantial functions in regulating gene expression through interacting with RNA-binding proteins, targeting microRNAs, and transcriptional regulation. They have been found to be involved in regulating several critical processes such as cell growth, and death, organ development, signal transduction, and tumorigenesis. Accordingly, circRNAs have been implicated in a number of human diseases including malignancies. They are particularly reported to contribute to several hallmarks of cancer leading to cancer development and progression, although a number also are described with tumor-suppressor function. In OC, circRNAs are linked to regulation of cell growth, invasiveness, metastasis, angiogenesis, and chemoresistance. Notably, clinical studies also have shown potentials in diagnosis, prediction of prognosis, and therapeutic targets for OC. In this review, I have an overview to the putative mechanisms, and functions of circRNAs in regulating OC pathogenesis in addition to their clinical potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data are available upon request to the author.

References

  • Aghaei M, Khodadadian A, Elham K-N, Nazari M, Babakhanzadeh E (2020) Major miRNA involved in insulin secretion and production in beta-cells. Int J Gen Med 13:89–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aghaei Zarch SM, Vahidi Mehrjardi MY, Babakhanzadeh E, Nazari M, Talebi M, Zeniali F et al (2019) MiR-181b expression levels as molecular biomarker for type 2 diabetes. J Mazandaran Univ Med Sci 29(176):195–201

    Google Scholar 

  • Ahmed I, Karedath T, Andrews SS, Al-Azwani IK, Mohamoud YA, Querleu D et al (2016) Altered expression pattern of circular RNAs in primary and metastatic sites of epithelial ovarian carcinoma. Oncotarget 7(24):36366–36381

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahn E, Araki K, Hashimoto M, Li W, Riley JL, Cheung J et al (2018) Role of PD-1 during effector CD8 T cell differentiation. Proc Natl Acad Sci 115(18):4749–4754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An Q, Liu T, Wang M-Y, Yang Y-J, Zhang Z-D, Lin Z-J et al (2020) circKRT7-miR-29a-3p-COL1A1 axis promotes ovarian cancer cell progression. Onco Targets Ther 13:8963–8976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen J, Forst SA, Zhao K, Inouye M, Delihas N (1989) The function of micF RNA. micF RNA is a major factor in the thermal regulation of OmpF protein in Escherichia coli. J Biol Chem 264(30):17961–17970

    Article  CAS  PubMed  Google Scholar 

  • Ardekani AM, Naeini MM (2010) The role of microRNAs in human diseases. Avicenna J Med Biotechnol 2(4):161–179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Artemaki PI, Scorilas A, Kontos CK (2020) Circular RNAs: a new piece in the colorectal cancer puzzle. Cancers 12(9):2464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asemani Y, Najafi S, Ezzatifar F, Zolbanin NM, Jafari R (2022) Recent highlights in the immunomodulatory aspects of Treg cell-derived extracellular vesicles: special emphasis on autoimmune diseases and transplantation. Cell Biosci 12(1):1–3

    Article  Google Scholar 

  • Bachmayr-Heyda A, Auer K, Sukhbaatar N, Aust S, Deycmar S, Reiner AT et al (2016) Small RNAs and the competing endogenous RNA network in high grade serous ovarian cancer tumor spread. Oncotarget 7(26):39640–39653

    Article  PubMed  PubMed Central  Google Scholar 

  • Bao L, Zhong J, Pang L (2019) Upregulation of circular RNA VPS13C-has-circ-001567 promotes ovarian cancer cell proliferation and invasion. Cancer Biother Radiopharm 34(2):110–118

    CAS  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batista Pedro J, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152(6):1298–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beermann J, Piccoli M-T, Viereck J, Thum T (2016) Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev 96(4):1297–1325

    Article  CAS  PubMed  Google Scholar 

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  PubMed  Google Scholar 

  • Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23(1):175–205

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Xie X, Li M, Gao Y (2021) CircHIPK2 contributes to DDP resistance and malignant behaviors of DDP-resistant ovarian cancer cells both in vitro and in vivo through circHIPK2/miR-338-3p/CHTOP ceRNA pathway. Onco Targets Ther 14:3151–3165

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen YY, Tai YC (2021) Hsa_circ_0006404 and hsa_circ_0000735 regulated ovarian cancer response to docetaxel treatment via regulating p-GP expression. Biochem Genet. https://doi.org/10.1007/s10528-021-10080-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen VW, Ruiz B, Killeen JL, Coté TR, Wu XC, Correa CN et al (2003) Pathology and classification of ovarian tumors. Cancer 97(S10):2631–2642

    Article  PubMed  Google Scholar 

  • Chen Q, Zhang J, He Y, Wang Y (2018) hsa_circ_0061140 knockdown reverses FOXM1-mediated cell growth and metastasis in ovarian cancer through miR-370 sponge activity. Mol Ther Nucleic Acids 13:55–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Ye X, Xia X, Lin X (2019a) Circular RNA ABCB10 correlates with advanced clinicopathological features and unfavorable survival, and promotes cell proliferation while reduces cell apoptosis in epithelial ovarian cancer. Cancer Biomark: Sect A Dis Mark 26(2):151–161

    Article  CAS  Google Scholar 

  • Chen H, Mao M, Jiang J, Zhu D, Li P (2019b) Circular RNA CDR1as acts as a sponge of miR-135b-5p to suppress ovarian cancer progression. Onco Targets Ther 12:3869–3879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Li X, Yang L, Li M, Zhang Y, Zhang J (2020a) CircASH2L promotes ovarian cancer tumorigenesis, angiogenesis, and lymphangiogenesis by regulating the miR-665/VEGFA axis as a competing endogenous RNA. Front Cell Dev Biol 8:595585

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Xiao K, Chen S, Huang Z, Ye Y, Chen T (2020b) Circular RNA hsa_circ_001895 serves as a sponge of microRNA-296-5p to promote clear cell renal cell carcinoma progression by regulating SOX12. Cancer Sci 111(2):713–726

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Wu W, Li Q-H, Xie B-M, Shen F, Du Y-P et al (2021) Circ-NOLC1 promotes epithelial ovarian cancer tumorigenesis and progression by binding ESRP1 and modulating CDK1 and RhoA expression. Cell Death Discov. 7(1):22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng H, Wang N, Tian J, Li Y, Ren L, Shi Z (2020) Circular RNA Circ_0025033 promotes the evolvement of ovarian cancer through the regulation of miR-330-5p/KLK4 axis. Cancer Manag Res 12:2753–2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng D, Wang J, Dong Z, Li X (2021) Cancer-related circular RNA: diverse biological functions. Cancer Cell Int 21(1):11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crick F (1970) Central dogma of molecular biology. Nature 227(5258):561–563

    Article  CAS  PubMed  Google Scholar 

  • Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding J, Wang Q, Guo N, Wang H, Chen H, Ni G et al (2020) CircRNA circ_0072995 promotes the progression of epithelial ovarian cancer by modulating miR-147a/CDK6 axis. Aging (albany NY) 12(17):17209–17223

    Article  CAS  PubMed  Google Scholar 

  • Dong L, Zhang L, Liu H, Xie M, Gao J, Zhou X et al (2020) Circ_0007331 knock-down suppresses the progression of endometriosis via miR-200c-3p/HiF-1α axis. J Cell Mol Med 24(21):12656–12666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doubeni CA, Doubeni AR, Myers AE (2016) Diagnosis and management of ovarian cancer. Am Fam Physician 93(11):937–944

    PubMed  Google Scholar 

  • Du Z, Wang L, Xia Y (2020) Circ_0015756 promotes the progression of ovarian cancer by regulating miR-942-5p/CUL4B pathway. Cancer Cell Int 20(1):572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Y, Liu X, Zhang S, Chen S, Guan X, Li Q et al (2021) CircCRIM1 promotes ovarian cancer progression by working as ceRNAs of CRIM1 and targeting miR-383-5p/ZEB2 axis. Reprod Biol Endocrinol: RB&E 19(1):176

    Article  CAS  Google Scholar 

  • Feng X, Bai X, Ni J, Wasinger VC, Beretov J, Zhu Y et al (2019) CHTOP in chemoresistant epithelial ovarian cancer: a novel and potential therapeutic target. Front Oncol. https://doi.org/10.3389/fonc.2019.00557

    Article  PubMed  PubMed Central  Google Scholar 

  • Frankish A, Diekhans M, Jungreis I, Lagarde J, Loveland Jane E, Mudge JM et al (2020) GENCODE 2021. Nucleic Acids Res 49(D1):D916–D923

    Article  PubMed Central  Google Scholar 

  • Gan X, Zhu H, Jiang X, Obiegbusi SC, Yong M, Long X et al (2020) CircMUC16 promotes autophagy of epithelial ovarian cancer via interaction with ATG13 and miR-199a. Mol Cancer 19(1):45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghafouri-Fard S, Najafi S, Hussen BM, Basiri A, Hidayat HJ, Taheri M et al (2022) The role of circular RNAs in the carcinogenesis of bladder cancer. Front Oncol. https://doi.org/10.3389/fonc.2022.801842

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong J, Xu X, Zhang X, Zhou Y (2020) Circular RNA-9119 suppresses in ovarian cancer cell viability via targeting the microRNA-21-5p-PTEN-Akt pathway. Aging (albany NY) 12(14):14314–14328

    Article  CAS  PubMed  Google Scholar 

  • Goodrich JA, Kugel JF (2006) Non-coding-RNA regulators of RNA polymerase II transcription. Nat Rev Mol Cell Biol 7(8):612–616

    Article  CAS  PubMed  Google Scholar 

  • Guan X, Zong Z-H, Liu Y, Chen S, Wang L-L, Zhao Y (2019) circPUM1 promotes tumorigenesis and progression of ovarian cancer by sponging miR-615-5p and miR-6753-5p. Mol Ther Nucleic Acids 18:882–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guarnerio J, Bezzi M, Jeong JC, Paffenholz SV, Berry K, Naldini MM et al (2016) Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell 166(4):1055–1056

    Article  CAS  PubMed  Google Scholar 

  • Guo Q, He Y, Sun L, Kong C, Cheng Y, Zhang G (2019) In silico detection of potential prognostic circRNAs through a re-annotation strategy in ovarian cancer. Oncol Lett 17(4):3677–3686

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo M, Li S, Zhao X, Yuan Y, Zhang B, Guan Y (2020) Knockdown of circular RNA Hsa_circ_0000714 can regulate RAB17 by sponging miR-370-3p to reduce paclitaxel resistance of ovarian cancer through CDK6/RB pathway. Onco Targets Ther 13:13211–13224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  • Hellström I, Raycraft J, Hayden-Ledbetter M, Ledbetter JA, Schummer M, McIntosh M et al (2003) The HE4 (WFDC2) protein is a biomarker for ovarian carcinoma. Can Res 63(13):3695–3700

    Google Scholar 

  • Hou W, Zhang Y (2021) Circ_0025033 promotes the progression of ovarian cancer by activating the expression of LSM4 via targeting miR-184. Pathol Res Pract 217:153275

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Wang L, Chen J, Gao H, Zhao W, Huang Y et al (2018) The circular RNA circ-ITCH suppresses ovarian carcinoma progression through targeting miR-145/RASA1 signaling. Biochem Biophys Res Commun 505(1):222–228

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Zhu Y, Zhang W, Lang J, Ning L (2019) Utility of plasma circBNC2 as a diagnostic biomarker in epithelial ovarian cancer. Onco Targets Ther 12:9715–9723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang K, Liu D, Su C (2021a) Circ_0007841 accelerates ovarian cancer development through facilitating MEX3C expression by restraining miR-151-3p activity. Aging (albany NY) 13(8):12058–12066

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Luo Y, Li X (2021b) Circ_0072995 promotes ovarian cancer progression through regulating miR-122–5p/SLC1A5 axis. Biochem Genet. https://doi.org/10.1007/s10528-021-10092-5

    Article  PubMed  Google Scholar 

  • Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA (new York, NY) 19(2):141–157

    Article  CAS  Google Scholar 

  • Jiang B (2017) Aerobic glycolysis and high level of lactate in cancer metabolism and microenvironment. Genes Dis 4(1):25–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Karedath T, Al-Dasim FM, Ahmed I, Al-Qurashi A, Raza A, Andrews SS et al (2021) Regulation of circular RNA CircNFATC3 in cancer Cells alters proliferation, migration, and oxidative phosphorylation. Front Cell Dev Biol 9:595156

    Article  PubMed  PubMed Central  Google Scholar 

  • Kokuryo T, Yokoyama Y, Yamaguchi J, Tsunoda N, Ebata T, Nagino M (2019) NEK2 is an effective target for cancer therapy with potential to induce regression of multiple human malignancies. Anticancer Res 39(5):2251–2258

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    Article  CAS  PubMed  Google Scholar 

  • Lavenniah A, Luu TDA, Li YP, Lim TB, Jiang J, Ackers-Johnson M et al (2020) Engineered circular RNA sponges act as miRNA inhibitors to attenuate pressure overload-induced cardiac hypertrophy. Mol Ther 28(6):1506–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lekka E, Hall J (2018) Noncoding RNAs in disease. FEBS Lett 592(17):2884–2900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letafati A, Najafi S, Mottahedi M, Karimzadeh M, Shahini A, Garousi S et al (2022) MicroRNA let-7 and viral infections: focus on mechanisms of action. Cell Mol Biol Lett 27(1):14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Zhang L (2021) CircSETDB1 knockdown inhibits the malignant progression of serous ovarian cancer through miR-129-3p-dependent regulation of MAP3K3. J Ovarian Res 14(1):160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Tie R, Chang K, Wang F, Deng S, Lu W et al (2012) Does risk for ovarian malignancy algorithm excel human epididymis protein 4 and CA125 in predicting epithelial ovarian cancer: a meta-analysis. BMC Cancer 12:258

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J et al (2015) Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res 25(8):981–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q-H, Liu Y, Chen S, Zong Z-H, Du Y-P, Sheng X-J et al (2019) circ-CSPP1 promotes proliferation, invasion and migration of ovarian cancer cells by acting as a miR-1236–3p sponge. Biomed Pharmacother 114:108832

    Article  CAS  PubMed  Google Scholar 

  • Li M, Cai J, Han X, Ren Y (2020a) Downregulation of circNRIP1 suppresses the paclitaxel resistance of ovarian cancer via regulating the miR-211-5p/HOXC8 axis. Cancer Manag Res 12:9159–9171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Lin S, An N (2020b) Hsa_circ_0009910: oncogenic circular RNA targets microRNA-145 in ovarian cancer cells. Cell Cycle 19(15):1857–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Lin S, Mo Z, Jiang J, Tang H, Wu C et al (2020c) CircRNA_100395 inhibits cell proliferation and metastasis in ovarian cancer via regulating miR-1228/p53/epithelial-mesenchymal transition (EMT) axis. J Cancer 11(3):599–609

    Article  PubMed  PubMed Central  Google Scholar 

  • Li L, Yu P, Zhang P, Wu H, Chen Q, Li S et al (2020d) Upregulation of hsa_circ_0007874 suppresses the progression of ovarian cancer by regulating the miR-760/SOCS3 pathway. Cancer Med 9(7):2491–2499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Chi C, Zhou L, Chen Y, Tang X (2021) Circular PVT1 regulates cell proliferation and invasion via miR-149-5p/FOXM1 axis in ovarian cancer. J Cancer 12(2):611–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Meng K, Qiu R (2021) Circular RNA Circ_0013958 functions as a tumor promoter in ovarian cancer by regulating miR-637/PLXNB2 axis. Front Genet 12:644451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin C, Xu X, Yang Q, Liang L, Qiao S (2020a) Circular RNA ITCH suppresses proliferation, invasion, and glycolysis of ovarian cancer cells by up-regulating CDH1 via sponging miR-106a. Cancer Cell Int 20:336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin W, Ye H, You K, Chen L (2020b) Up-regulation of circ_LARP4 suppresses cell proliferation and migration in ovarian cancer by regulating miR-513b-5p/LARP4 axis. Cancer Cell Int 20:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin X, Chen Y, Ye X, Xia X (2021) Circular RNA ABCB10 promotes cell proliferation and invasion, but inhibits apoptosis via regulating the microRNA-1271-mediated Capn4/Wnt/β-catenin signaling pathway in epithelial ovarian cancer. Mol Med Rep. https://doi.org/10.3892/mmr.2021.12026

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y-B, Mei Y, Long J, Zhang Y, Hu D-L, Zhou H-H (2018a) RIF1 promotes human epithelial ovarian cancer growth and progression via activating human telomerase reverse transcriptase expression. J Exp Clin Cancer Res 37(1):182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Zhang M, Xu S, Zhang J, Zou J, Yang C et al (2018b) HOXC8 promotes proliferation and migration through transcriptional up-regulation of TGFβ1 in non-small cell lung cancer. Oncogenesis 7(2):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu N, Zhang J, Zhang LY, Wang L (2018c) CircHIPK3 is upregulated and predicts a poor prognosis in epithelial ovarian cancer. Eur Rev Med Pharmacol Sci 22(12):3713–3718

    CAS  PubMed  Google Scholar 

  • Liu X, Abraham JM, Cheng Y, Wang Z, Wang Z, Zhang G et al (2018d) Synthetic circular RNA functions as a miR-21 sponge to suppress gastric carcinoma cell proliferation. Mol Therapy-Nucleic Acids 13:312–321

    Article  CAS  Google Scholar 

  • Liu J, Yu F, Wang S, Zhao X, Jiang F, Xie J et al (2019a) circGFRA1 promotes ovarian cancer progression by sponging miR-449a. J Cancer 10(17):3908–3913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu K, Zhang Q, Pan F, Wang XD, Wenjing H, Tong H (2019b) Expression of circular RNAs in gynecological tumors: a systematic review. Medicine (baltimore) 98(20):e15736

    Article  PubMed  Google Scholar 

  • Liu J, Ding J, Qu B, Liu J, Song X, Suo Q et al (2020a) CircPSMC3 alleviates the symptoms of PCOS by sponging miR-296-3p and regulating PTEN expression. J Cell Mol Med 24(18):11001–11011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu ZH, Liu WJ, Yu XY, Qi XL, Sun CC (2020b) Circ_0005276 aggravates the development of epithelial ovarian cancer by targeting ADAM9. Eur Rev Med Pharmacol Sci 24(20):10375–10382

    PubMed  Google Scholar 

  • Lu H, Han X, Ren J, Ren K, Li Z, Sun Z (2020) Circular RNA HIPK3 induces cell proliferation and inhibits apoptosis in non-small cell lung cancer through sponging miR-149. Cancer Biol Ther 21(2):113–121

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Gui R (2020) Circulating exosomal circFoxp1 confers cisplatin resistance in epithelial ovarian cancer cells. J Gynecol Oncol. https://doi.org/10.3802/jgo.2020.31.e75

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo L, Gao YQ, Sun XF (2018a) Circular RNA ITCH suppresses proliferation and promotes apoptosis in human epithelial ovarian cancer cells by sponging miR-10a-α. Eur Rev Med Pharmacol Sci 22(23):8119–8126

    CAS  PubMed  Google Scholar 

  • Luo L, Gao Y, Sun X (2018b) Circ-ITCH correlates with small tumor size, decreased FIGO stage and prolonged overall survival, and it inhibits cells proliferation while promotes cells apoptosis in epithelial ovarian cancer. Cancer Biomark: Sect A Dis Mark 23(4):505–513

    Article  CAS  Google Scholar 

  • Ma R, Ye X, Cheng H, Cui H, Chang X (2021) Tumor-derived exosomal circRNA051239 promotes proliferation and migration of epithelial ovarian cancer. Am J Transl Res 13(3):1125–1139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mattick JS (2001) Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep 2(11):986–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338

    Article  CAS  PubMed  Google Scholar 

  • Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Li P et al (2017) CircRNA: functions and properties of a novel potential biomarker for cancer. Mol Cancer 16(1):94

    Article  PubMed  PubMed Central  Google Scholar 

  • Moss EL, Hollingworth J, Reynolds TM (2005) The role of CA125 in clinical practice. J Clin Pathol 58(3):308–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Najafi S (2022) Circular RNAs as emerging players in cervical cancer tumorigenesis; a review to roles and biomarker potentials. Int J Biol Macromol 206:939–953

    Article  CAS  PubMed  Google Scholar 

  • Najafi S, Ghafouri-Fard S, Hussen BM, Jamal HH, Taheri M, Hallajnejad M (2022a) Oncogenic roles of small nucleolar RNA host gene 7 (SNHG7) long noncoding RNA in human cancers and potentials. Front Cell Dev Biol 9:809345

    Article  PubMed  PubMed Central  Google Scholar 

  • Najafi S, Tan SC, Raee P, Rahmati Y, Asemani Y, Lee EHC et al (2022b) Gene regulation by antisense transcription: a focus on neurological and cancer diseases. Biomed Pharmacother 145:112265

    Article  CAS  PubMed  Google Scholar 

  • Najafi S, Khatami SH, Khorsand M, Jamali Z, Shabaninejad Z, Moazamfard M, Majidpoor J, Zarch SM, Movahedpour A (2022c) Long non-coding RNAs (lncRNAs); roles in tumorigenesis and potentials as biomarkers in cancer diagnosis. Exp Cell Res 418(2):113294

    Article  CAS  PubMed  Google Scholar 

  • Najafi S, Tan SC, Aghamiri S, Raee P, Ebrahimi Z, Jahromi ZK, Rahmati Y, Nahand JS, Piroozmand A, Jajarmi V, Mirzaei H (2022d) Therapeutic potentials of CRISPR-Cas genome editing technology in human viral infections. Biomed Pharmacother 148:112743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nigro JM, Cho KR, Fearon ER, Kern SE, Ruppert JM, Oliner JD et al (1991) Scrambled exons. Cell 64(3):607–613

    Article  CAS  PubMed  Google Scholar 

  • Ning L, Long B, Zhang W, Yu M, Wang S, Cao D et al (2018) Circular RNA profiling reveals circEXOC6B and circN4BP2L2 as novel prognostic biomarkers in epithelial ovarian cancer. Int J Oncol 53(6):2637–2646

    CAS  PubMed  Google Scholar 

  • Oncul S, Amero P, Rodriguez-Aguayo C, Calin GA, Sood AK, Lopez-Berestein G (2020) Long non-coding RNAs in ovarian cancer: expression profile and functional spectrum. RNA Biol 17(11):1523–1534

    Article  CAS  PubMed  Google Scholar 

  • Pei C, Wang H, Shi C, Zhang C, Wang M (2020) CircRNA hsa_circ_0013958 may contribute to the development of ovarian cancer by affecting epithelial-mesenchymal transition and apoptotic signaling pathways. J Clin Lab Anal 34(7):e23292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Permuth-Wey J, Sellers TA (2009) Epidemiology of ovarian cancer. In: Verma M (ed) Cancer epidemiology: modifiable factors. Humana Press, Totowa, NJ, pp 413–437

    Chapter  Google Scholar 

  • Prat J (2015) FIGO’s staging classification for cancer of the ovary, fallopian tube, and peritoneum: abridged republication. J Gynecol Oncol 26(2):87–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahimi K, Færch Nielsen A, Venø MT, Kjems J (2021) Nanopore long-read sequencing of circRNAs. Methods 196:23–29

    Article  CAS  PubMed  Google Scholar 

  • Rahmati Y, Asemani Y, Aghamiri S, Ezzatifar F, Najafi S (2021) CiRS-7/CDR1as; an oncogenic circular RNA as a potential cancer biomarker. Pathol-Res Pract 227:153639

    Article  CAS  PubMed  Google Scholar 

  • Rajappa A, Banerjee S, Sharma V, Khandelia P (2020) Circular RNAs: emerging role in cancer diagnostics and therapeutics. Front Mol Biosci 7:577938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rastogi M, Gupta S, Sachan M (2016) Biomarkers towards ovarian cancer diagnostics: present and future prospects. Braz Arch Biol Technol. https://doi.org/10.1590/1678-4324-2016160070

    Article  Google Scholar 

  • Reid BM, Permuth JB, Sellers TA (2017) Epidemiology of ovarian cancer: a review. Cancer Biol Med 14(1):9–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren C, Zhang Z, Wang S, Zhu W, Zheng P, Wang W (2020) Circular RNA hsa_circ_0001178 facilitates the invasion and metastasis of colorectal cancer through upregulating ZEB1 via sponging multiple miRNAs. Biol Chem 401(4):487–496

    Article  CAS  PubMed  Google Scholar 

  • Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO (2013) Cell-type specific features of circular RNA expression. PLoS Genet 9(9):e1003777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK (1976) Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA 73(11):3852–3856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santosh B, Varshney A, Yadava PK (2015) Non-coding RNAs: biological functions and applications. Cell Biochem Funct 33(1):14–22

    Article  CAS  PubMed  Google Scholar 

  • Sayad A, Najafi S, Kashi AH, Hosseini SJ, Akrami SM, Taheri M et al (2021) Circular RNAs in renal cell carcinoma: functions in tumorigenesis and diagnostic and prognostic potentials. Pathol-Res Pract 229:153720

    Article  PubMed  Google Scholar 

  • Sayad A, Najafi S, Hussen BM, Jamali E, Taheri M, Ghafouri-Fard S (2022) The role of circular RNAs in pancreatic cancer: new players in tumorigenesis and potential biomarkers. Pathol-Res Pract 232:153833

    Article  CAS  PubMed  Google Scholar 

  • Sheng M, Wei N, Yang HY, Yan M, Zhao QX, Jing LJ (2019) CircRNA UBAP2 promotes the progression of ovarian cancer by sponging microRNA-144. Eur Rev Med Pharmacol Sci 23(17):7283–7294

    CAS  PubMed  Google Scholar 

  • Sheng S, Hu Y, Yu F, Tong W, Wang S, Cai Y et al (2020) circKIF4A sponges miR-127 to promote ovarian cancer progression. Aging (albany NY) 12(18):17921–17929

    Article  CAS  PubMed  Google Scholar 

  • Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64(1):9–29

    Article  PubMed  Google Scholar 

  • Statello L, Guo C-J, Chen L-L, Huarte M (2021) Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22(2):96–118

    Article  CAS  PubMed  Google Scholar 

  • Su M, Xiao Y, Ma J, Tang Y, Tian B, Zhang Y et al (2019) Circular RNAs in cancer: emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers. Mol Cancer 18(1):90

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun S, Fang H (2021) Curcumin inhibits ovarian cancer progression by regulating circ-PLEKHM3/miR-320a/SMG1 axis. J Ovarian Res 14(1):158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Li X, Chen A, Shi W, Wang L, Yi R et al (2019a) circPIP5K1A serves as a competitive endogenous RNA contributing to ovarian cancer progression via regulation of miR-661/IGFBP5 signaling. J Cell Biochem 120(12):19406–19414

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Liu J, Zhou L (2019b) Upregulation of circular RNA circ-FAM53B predicts adverse prognosis and accelerates the progression of ovarian cancer via the miR-646/VAMP2 and miR-647/MDM2 signaling pathways. Oncol Rep 42(6):2728–2737

    CAS  PubMed  Google Scholar 

  • Sun X, Luo L, Gao Y (2020) Circular RNA PVT1 enhances cell proliferation but inhibits apoptosis through sponging microRNA-149 in epithelial ovarian cancer. J Obstet Gynaecol Res 46(4):625–635

    Article  CAS  PubMed  Google Scholar 

  • Taft RJ, Pheasant M, Mattick JS (2007) The relationship between non-protein-coding DNA and eukaryotic complexity. BioEssays 29(3):288–299

    Article  CAS  PubMed  Google Scholar 

  • Taheri M, Najafi S, Basiri A, Hussen BM, Baniahmad A, Jamali E et al (2021) The role and clinical potentials of circular RNAs in prostate cancer. Front Oncol. https://doi.org/10.3389/fonc.2021.781414

    Article  PubMed  PubMed Central  Google Scholar 

  • Teng F, Xu J, Zhang M, Liu S, Gu Y, Zhang M et al (2019) Comprehensive circular RNA expression profiles and the tumor-suppressive function of circHIPK3 in ovarian cancer. Int J Biochem Cell Biol 112:8–17

    Article  CAS  PubMed  Google Scholar 

  • Thorsen SB, Obad S, Jensen NF, Stenvang J, Kauppinen S (2012) The therapeutic potential of microRNAs in cancer. Cancer J (sudbury, Mass) 18(3):275–284

    Article  CAS  Google Scholar 

  • Tsujioka H, Yotsumoto F, Hikita S, Ueda T, Kuroki M, Miyamoto S (2011) Targeting the heparin-binding epidermal growth factor-like growth factor in ovarian cancer therapy. Curr Opin Obstet Gynecol 23(1):24–30

    Article  PubMed  Google Scholar 

  • Urban N, Drescher C (2008) Potential and limitations in early diagnosis of ovarian cancer. Adv Exp Med Biol 622:3–14

    Article  PubMed  Google Scholar 

  • Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    Article  CAS  PubMed  Google Scholar 

  • Wan B, Hu H, Wang R, Liu W, Chen D (2020) Therapeutic potential of circular RNAs in osteosarcoma. Front Oncol. https://doi.org/10.3389/fonc.2020.00370

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wang Z (2015) Efficient backsplicing produces translatable circular mRNAs. RNA (new York, NY) 21(2):172–179

    Article  CAS  Google Scholar 

  • Wang H, Rosen DG, Wang H, Fuller GN, Zhang W, Liu J (2006) Insulin-like growth factor-binding protein 2 and 5 are differentially regulated in ovarian cancer of different histologic types. Mod Pathol off J United States Can Acad Pathol 19(9):1149–1156

    Article  CAS  Google Scholar 

  • Wang L-L, Zong Z-H, Liu Y, Guan X, Chen S, Zhao Y (2019a) CircRhoC promotes tumorigenicity and progression in ovarian cancer by functioning as a miR-302e sponge to positively regulate VEGFA. J Cell Mol Med 23(12):8472–8481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Wang J, Zhang X, Liu G (2019b) Serum circSETDB1 is a promising biomarker for predicting response to platinum-taxane-combined chemotherapy and relapse in high-grade serous ovarian cancer. Onco Targets Ther 12:7451–7457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Wu A, Yang B, Zhu X, Teng Y, Ai Z (2020a) Profiling and bioinformatics analyses reveal differential circular RNA expression in ovarian cancer. Gene 724:144150

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yao Y, Jin M (2020b) Circ-0001068 is a novel biomarker for ovarian cancer and inducer of PD1 expression in T cells. Aging (albany NY) 12(19):19095–19106

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Zhang H, Li P (2020c) Upregulation of hsa_circRNA_102958 indicates poor prognosis and promotes ovarian cancer progression through miR-1205/SH2D3A axis. Cancer Manag Res 12:4045–4053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Zhang W, Fang J, Xie P, Miao M, Yang H (2020d) Circular RNA circEXOC6B inhibits the progression of ovarian cancer by sponging miR-421 and regulating RUS1 expression. Onco Targets Ther 13:8233–8243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang N, Cao Q-X, Tian J, Ren L, Cheng H-L, Yang S-Q (2020e) Circular RNA MTO1 inhibits the proliferation and invasion of ovarian cancer cells through the miR-182–5p/KLF15 axis. Cell Transplant. https://doi.org/10.1177/0963689720943613

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S, Ying Y, Ma X, Wang W, Wang X, Xie L (2021) Diverse roles and therapeutic potentials of circular RNAs in urological cancers. Front Mol Biosci. https://doi.org/10.3389/fmolb.2021.761698

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S, Li Z, Zhu G, Hong L, Hu C, Wang K et al (2021a) RNA-binding protein IGF2BP2 enhances circ_0000745 abundancy and promotes aggressiveness and stemness of ovarian cancer cells via the microRNA-3187-3p/ERBB4/PI3K/AKT axis. J Ovarian Res 14(1):154

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Zhang W, Guo H, Chu D, Zhang R, Guo R (2021b) CircLNPEP promotes the progression of ovarian cancer through regulating miR-876-3p/ WNT5A axis. Cell Cycle 20(19):2021–2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei L, Surma M, Shi S, Lambert-Cheatham N, Shi J (2016) Novel insights into the roles of rho kinase in cancer. Arch Immunol Ther Exp 64(4):259–278

    Article  CAS  Google Scholar 

  • Wei X, Lv H, Yang S, Yang X (2021) CircRNA PLOD2 enhances ovarian cancer propagation by controlling miR-378. Saudi J Biol Sci 28(11):6260–6265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S-G, Zhou P, Chen J-X, Lei J, Hua L, Dong Y et al (2021a) circ-PTK2 (hsa_circ_0008305) regulates the pathogenic processes of ovarian cancer via miR-639 and FOXC1 regulatory cascade. Cancer Cell Int 21(1):277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Liu D, Wang S, Liu J (2021b) Circ_0007444 inhibits the progression of ovarian cancer via mediating the miR-570-3p/PTEN axis. Onco Targets Ther 14:97–110

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia B, Zhao Z, Wu Y, Wang Y, Zhao Y, Wang J (2020) Circular RNA circTNPO3 regulates paclitaxel resistance of ovarian cancer cells by miR-1299/NEK2 signaling pathway. Mol Ther Nucleic Acids 21:780–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Wei Y (2021) A novel regulatory player in the innate immune system: long non-coding RNAs. Int J Mol Sci 22(17):9535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie J, Wang S, Li G, Zhao X, Jiang F, Liu J et al (2019) circEPSTI1 regulates ovarian cancer progression via decoying miR-942. J Cell Mol Med 23(5):3597–3602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie W, Liu LU, He C, Zhao M, Ni R, Zhang Z et al (2021) Circ_0002711 knockdown suppresses cell growth and aerobic glycolysis by modulating miR-1244/ROCK1 axis in ovarian cancer. J Biosci. https://doi.org/10.1007/s12038-020-00136-0

    Article  PubMed  Google Scholar 

  • Xu A, Jiang M, Li S, Fei Q (2020a) Down-regulation of circ_0061140 attenuates ectopic endometrial cell proliferation, migration and invasion in endometriosis via inactivating Notch2. Gene 757:144926

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Ni M, Li J, Cheng J, Zhao H, Zhao J et al (2020b) Circ0004390 promotes cell proliferation through sponging miR-198 in ovarian cancer. Biochem Biophys Res Commun 526(1):14–20

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Deng B, Li M, Chen Y, Zhuan L (2020c) circRNA-UBAP2 promotes the proliferation and inhibits apoptosis of ovarian cancer though miR-382–5p/PRPF8 axis. J Ovarian Res 13(1):81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan H, Xiang H, Sun B, Feng F, Chen P (2020) Circular RNA-ITCH inhibits the proliferation of ovarian carcinoma by downregulating lncRNA HULC. Reprod Sci (thousand Oaks, Calif) 27(1):375–379

    Article  CAS  Google Scholar 

  • Yang X, Wang J, Li H, Sun Y, Tong X (2021a) Downregulation of hsa_circ_0026123 suppresses ovarian cancer cell metastasis and proliferation through the miR-124-3p/EZH2 signaling pathway. Int J Mol Med 47(2):668–676

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Guo Y, Zhang Y, Wang D, Zhang G, Hou J et al (2021b) Circ_MUC16 attenuates the effects of propofol to promote the aggressive behaviors of ovarian cancer by mediating the miR-1182/S100B signaling pathway. BMC Anesthesiol 21(1):297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Z, Luo J, Hu K, Lin J, Huang H, Wang Q et al (2017) ZKSCAN1 gene and its related circular RNA (circZKSCAN1) both inhibit hepatocellular carcinoma cell growth, migration, and invasion but through different signaling pathways. Mol Oncol 11(4):422–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yong M, Hu J, Zhu H, Jiang X, Gan X, Hu L (2020) Circ-EEF2 facilitated autophagy via interaction with mir-6881-3p and ANXA2 in EOC. Am J Cancer Res 10(11):3737–3751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng X-Y, Yuan J, Wang C, Zeng D, Yong J-H, Jiang X-Y et al (2020) circCELSR1 facilitates ovarian cancer proliferation and metastasis by sponging miR-598 to activate BRD4 signals. Mol Med 26(1):70

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH et al (2013) Circular intronic long noncoding RNAs. Mol Cell 51(6):792–806

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Xia B, Xu Y, Zhang Y, Xu J, Lou G (2019a) Circular RNA (hsa_circ_0051240) promotes cell proliferation, migration and invasion in ovarian cancer through miR-637/KLK4 axis. Artif Cells, Nanomed Biotechnol 47(1):1224–1233

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zhou Q, Qiu Q, Hou L, Wu M, Li J et al (2019b) CircPLEKHM3 acts as a tumor suppressor through regulation of the miR-9/BRCA1/DNAJB6/KLF4/AKT1 axis in ovarian cancer. Mol Cancer 18(1):144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Xu Y, Ye W, Jiang J, Wu C (2020a) Circular RNA S-7 promotes ovarian cancer EMT via sponging miR-641 to up-regulate ZEB1 and MDM2. Biosci Rep 40(7):BSR20200825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Li Y, Zhao W, Liu G, Yang Q (2020b) Circ-PGAM1 promotes malignant progression of epithelial ovarian cancer through regulation of the miR-542-3p/CDC5L/PEAK1 pathway. Cancer Med 9(10):3500–3521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Jin Y, Hu Q, Cheng S, Wang C, Yang Z et al (2020c) Circular RNA hsa_circ_0078607 suppresses ovarian cancer progression by regulating miR-518a-5p/Fas signaling pathway. J Ovarian Res. 13(1):64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Yu Z, Wu B, Sun F (2021a) Circular RNA circFOXP1 promotes angiogenesis by regulating microRNA -127–5p/CDKN2AIP signaling pathway in osteosarcoma. Bioengineered. https://doi.org/10.1080/21655979.2021.1989258

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Xu Y, Zhang Y, Li B, Lou G (2021b) Circular RNA circE2F2 promotes malignant progression of ovarian cancer cells by upregulating the expression of E2F2 protein via binding to HuR protein. Cell Signal 84:110014

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Yang Z, Jin Y, Cheng S, Yang J, Wang Y (2021c) Low expression of circular RNA hsa_circ_0078607 predicts poor prognosis in high-grade serous ovarian cancer. Cancer Manag Res 13:2877–2883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Zhu H, Hu J (2021d) CircRAB11FIP1 promoted autophagy flux of ovarian cancer through DSC1 and miR-129. Cell Death Dis 12(2):219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Hossain MT, Liu W, Peng Y, Pan Y, Wei Y (2022) Evaluation of CircRNA sequence assembly methods using long reads. Front Genet. https://doi.org/10.3389/fgene.2022.816825

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Cai Y, Xu J (2019a) Circular RNAs: biogenesis, mechanism, and function in human cancers. Int J Mol Sci 20(16):3926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Ji M, Wang Q, He N, Li Y (2019b) Circular RNA Cdr1as upregulates SCAI to suppress cisplatin resistance in ovarian cancer via miR-1270 suppression. Mol Ther Nucleic Acids 18:24–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Hu Y, Shen Q, Chen Q, Zhu XJ, Jiang SS et al (2020) CircRNA_MYLK promotes malignant progression of ovarian cancer through regulating microRNA-652. Eur Rev Med Pharmacol Sci 24(10):5281–5291

    CAS  PubMed  Google Scholar 

  • Zheng Y, Li Z, Yang S, Wang Y, Luan Z (2020) CircEXOC6B suppresses the proliferation and motility and sensitizes ovarian cancer cells to paclitaxel through miR-376c-3p/FOXO3 axis. Cancer Biother Radiopharm. https://doi.org/10.1089/cbr.2020.3739

    Article  PubMed  Google Scholar 

  • Zhou J, Dong Z-N, Qiu B-Q, Hu M, Liang X-Q, Dai X et al (2020) CircRNA FGFR3 induces epithelial-mesenchymal transition of ovarian cancer by regulating miR-29a-3p/E2F1 axis. Aging (albany NY) 12(14):14080–14091

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Jiang J, Guo S (2021) Hsa_circ_0004712 downregulation attenuates ovarian cancer malignant development by targeting the miR-331-3p/FZD4 pathway. J Ovarian Res 14(1):118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zong Z-H, Du Y-P, Guan X, Chen S, Zhao Y (2019) CircWHSC1 promotes ovarian cancer progression by regulating MUC1 and hTERT through sponging miR-145 and miR-1182. J Exp Clin Cancer Res 38(1):437

    Article  PubMed  PubMed Central  Google Scholar 

  • Zou T, Wang PL, Gao Y, Liang WT (2018) Circular RNA_LARP4 is lower expressed and serves as a potential biomarker of ovarian cancer prognosis. Eur Rev Med Pharmacol Sci 22(21):7178–7182

    CAS  PubMed  Google Scholar 

Download references

Funding

This study received no funding.

Author information

Authors and Affiliations

Authors

Contributions

SN conducted all stages of the study.

Corresponding author

Correspondence to Sajad Najafi.

Ethics declarations

Conflict of interest

Not applicable.

Ethical approval

Not applicable.

Consent for participation

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafi, S. The emerging roles and potential applications of circular RNAs in ovarian cancer: a comprehensive review. J Cancer Res Clin Oncol 149, 2211–2234 (2023). https://doi.org/10.1007/s00432-022-04328-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-022-04328-z

Keywords

Navigation