Skip to main content

Advertisement

Log in

Ezrin-expressing lung adenocarcinoma cells and podoplanin-positive fibroblasts form a malignant microenvironment

  • Original Article - Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Cancer cells and cancer-associated fibroblasts (CAFs) together create the tumor microenvironment, which affects malignant behavior. Lung adenocarcinomas with CAFs expressing podoplanin (PDPN) are clinically aggressive, but the molecular mechanism underlying this phenomenon has not been established. So we identified the characteristic immunophenotype of lung adenocarcinoma cells coexisting with PDPN-expressing CAFs (PDPN-CAFs) and examined how it relates to an aggressive clinicopathological outcome.

Methods

We analyzed the clinicopathological characteristics of 119 adenocarcinomas with a uniform size (2–3 cm). The expression levels of ten invasiveness-related proteins which related to cell adhesion and invasiveness, such as Ezrin, were examined in cancer cells from PDPN-CAFs (+) cases and from PDPN-CAFs (−) cases (n = 20 each). To examine the functional importance of the identified protein on the invasion phenotype, we performed wound healing and a Matrigel invasion assay using shRNA-knockdown lung adenocarcinoma cells (PC-9).

Results

The PDPN-CAFs (+) cases had significantly higher rates of node metastasis (p < 0.01) and vascular invasion (p < 0.01). The cancer cells from the PDPN-CAFs (+) cases also had a significantly higher staining score for Ezrin (p < 0.01) than those from the PDPN-CAFs (−) cases. The migration and invasion activities of the shEzrin-induced PC-9 cells were significantly lower than those of the control cells.

Conclusions

Our results indicated that within a tumor microenvironment composed of PDPN-CAFs, increased Ezrin expression in cancer cells might play a key role in the invasiveness of lung adenocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Asamura H et al (2008) A Japanese Lung Cancer Registry study: prognosis of 13,010 resected lung cancers. J Thorac Oncol 3:46–52

    Article  PubMed  Google Scholar 

  • Bretscher A, Edwards K, Fehon RG (2002) ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 3:586–599

    Article  CAS  PubMed  Google Scholar 

  • Chen QY, Xu W, Jiao DM, Wu LJ, Song J, Yan J, Shi JG (2013) Silence of ezrin modifies migration and actin cytoskeleton rearrangements and enhances chemosensitivity of lung cancer cells in vitro. Mol Cell Biochem 377:207–218

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Li T, Zhang D, Han J (2010) Expression of Ezrin and phosphorylated Ezrin (pEzrin) in pancreatic ductal adenocarcinoma. Cancer Invest 28:242–247

    Article  CAS  PubMed  Google Scholar 

  • Devesa SS, Bray F, Vizcaino AP, Parkin DM (2005) International lung cancer trends by histologic type: male:female differences diminishing and adenocarcinoma rates rising. Int J Cancer 117:294–299

    Article  CAS  PubMed  Google Scholar 

  • Di Cristofano C et al (2010) Phosphorylated ezrin is located in the nucleus of the osteosarcoma cell. Mod Pathol 23:1012–1020

    Article  PubMed  Google Scholar 

  • Fehon RG, McClatchey AI, Bretscher A (2010) Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol 11:276–287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gottschling S et al (2013) Mesenchymal stem cells in non-small cell lung cancer—different from others? Insights from comparative molecular and functional analyses. Lung Cancer 80:19–29

    Article  PubMed  Google Scholar 

  • Hasegawa Y, Takanashi S, Kanehira Y, Tsushima T, Imai T, Okumura K (2001) Transforming growth factor-beta1 level correlates with angiogenesis, tumor progression, and prognosis in patients with nonsmall cell lung carcinoma. Cancer 91:964–971

    Article  CAS  PubMed  Google Scholar 

  • Hirao M et al (1996) Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway. J Cell Biol 135:37–51

    Article  CAS  PubMed  Google Scholar 

  • Hofheinz RD et al (2003) Stromal antigen targeting by a humanised monoclonal antibody: an early phase II trial of sibrotuzumab in patients with metastatic colorectal cancer. Onkologie 26:44–48

    Article  CAS  PubMed  Google Scholar 

  • Hoshino A et al (2011) Podoplanin-positive fibroblasts enhance lung adenocarcinoma tumor formation: podoplanin in fibroblast functions for tumor progression. Cancer Res 71:4769–4779

    Article  CAS  PubMed  Google Scholar 

  • Ishii G et al (2005) In vivo and in vitro characterization of human fibroblasts recruited selectively into human cancer stroma. Int J Cancer 117:212–220

    Article  CAS  PubMed  Google Scholar 

  • Ito TK, Ishii G, Chiba H, Ochiai A (2007) The VEGF angiogenic switch of fibroblasts is regulated by MMP-7 from cancer cells. Oncogene 26:7194–7203

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Ishii G, Nagai K, Maeda R, Nakano Y, Ochiai A (2012a) Prognostic impact of cancer-associated stromal cells in patients with stage I lung adenocarcinoma. Chest 142:151–158

    Article  PubMed  Google Scholar 

  • Ito S et al (2012b) Tumor promoting effect of podoplanin-positive fibroblasts is mediated by enhanced RhoA activity. Biochem Biophys Res Commun 422:194–199

    Article  CAS  PubMed  Google Scholar 

  • Karmakar S, Das C (2004) Modulation of ezrin and E-cadherin expression by IL-1beta and TGF-beta1 in human trophoblasts. J Reprod Immunol 64:9–29

    Article  CAS  PubMed  Google Scholar 

  • Kawase A et al (2008) Podoplanin expression by cancer associated fibroblasts predicts poor prognosis of lung adenocarcinoma. Int J Cancer 123:1053–1059

    Article  CAS  PubMed  Google Scholar 

  • Korc M (2007) Pancreatic cancer-associated stroma production. Am J Surg 194:S84–S86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kraman M et al (2010) Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science 330:827–830

    Article  CAS  PubMed  Google Scholar 

  • Li Q et al (2012) Expression of ezrin correlates with malignant phenotype of lung cancer, and in vitro knockdown of ezrin reverses the aggressive biological behavior of lung cancer cells. Tumour Biol 33:1493–1504

    Article  CAS  PubMed  Google Scholar 

  • Louvet-Vallee S (2000) ERM proteins: from cellular architecture to cell signaling. Biol Cell 92:305–316

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Liu YP, Zhang XH, Geng CZ, Li ZH (2013) Relationship of RhoA signaling activity with ezrin expression and its significance in the prognosis for breast cancer patients. Chin Med J (Engl) 126:242–247

    CAS  Google Scholar 

  • Maeda M, Matsui T, Imamura M, Tsukita S, Tsukita S (1999) Expression level, subcellular distribution and rho-GDI binding affinity of merlin in comparison with Ezrin/Radixin/Moesin proteins. Oncogene 18:4788–4797

    Article  CAS  PubMed  Google Scholar 

  • McClatchey AI (2003) Merlin and ERM proteins: unappreciated roles in cancer development? Nat Rev Cancer 3:877–883

    Article  PubMed  Google Scholar 

  • Ohta M et al (2013) Positive and negative regulation of podoplanin expression by TGF-beta and histone deacetylase inhibitors in oral and pharyngeal squamous cell carcinoma cell lines. Oral Oncol 49:20–26

    Article  CAS  PubMed  Google Scholar 

  • Okusa Y, Ichikura T, Mochizuki H (1999) Prognostic impact of stromal cell-derived urokinase-type plasminogen activator in gastric carcinoma. Cancer 85:1033–1038

    Article  CAS  PubMed  Google Scholar 

  • Pujuguet P, Del Maestro L, Gautreau A, Louvard D, Arpin M (2003) Ezrin regulates E-cadherin-dependent adherens junction assembly through Rac1 activation. Mol Biol Cell 14:2181–2191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scott AM et al (2003) A Phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clin Cancer Res 9:1639–1647

    CAS  PubMed  Google Scholar 

  • Suzuki H, Kato Y, Kaneko MK, Okita Y, Narimatsu H, Kato M (2008) Induction of podoplanin by transforming growth factor-beta in human fibrosarcoma. FEBS Lett 582:341–345

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Sasaki T, Mammoto A, Takaishi K, Kameyama T, Tsukita S, Takai Y (1997) Direct interaction of the Rho GDP dissociation inhibitor with ezrin/radixin/moesin initiates the activation of the Rho small G protein. J Biol Chem 272:23371–23375

    Article  CAS  PubMed  Google Scholar 

  • Tsukita S, Oishi K, Sato N, Sagara J, Kawai A, Tsukita S (1994) ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons. J Cell Biol 126:391–401

    Article  CAS  PubMed  Google Scholar 

  • Tynninen O, Carpen O, Jaaskelainen J, Paavonen T, Paetau A (2004) Ezrin expression in tissue microarray of primary and recurrent gliomas. Neuropathol Appl Neurobiol 30:472–477

    Article  CAS  PubMed  Google Scholar 

  • Xing F, Saidou J, Watabe K (2010) Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci 15:166–179

    Article  CAS  Google Scholar 

  • Xu Y, Yu Q (2003) E-cadherin negatively regulates CD44-hyaluronan interaction and CD44-mediated tumor invasion and branching morphogenesis. J Biol Chem 278:8661–8668

    Article  CAS  PubMed  Google Scholar 

  • Yoshizawa A et al (2011) Impact of proposed IASLC/ATS/ERS classification of lung adenocarcinoma: prognostic subgroups and implications for further revision of staging based on analysis of 514 stage I cases. Mod Pathol 24:653–664

    Article  CAS  PubMed  Google Scholar 

  • Zhang XQ, Chen GP, Wu T, Yan JP, Zhou JY (2012) Expression and clinical significance of ezrin in non-small-cell lung cancer. Clin Lung Cancer 13:196–204

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Cancer Center Research and Development Fund (23-A-12 and 23-K-18), the Foundation for the Promotion of Cancer Research, 3rd-Term Comprehensive 10-Year Strategy for Cancer Control, the Advanced research for medical products Mining Programme of the National Institute of Biomedical Innovation (NIBIO), and JSPS KAKENHI (24659185).

Conflict of interest

The authors have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genichiro Ishii.

Electronic supplementary material

Below is the link to the electronic supplementary material.

432_2014_1851_MOESM1_ESM.pdf

Supplementary Figure 1 Western blot analysis showing Ezrin expression in control (shLuciferase) or Ezrin shRNA-induced PC-9 cells, compared with β-actin expression (PDF 71 kb)

Supplementary material 2 (DOCX 18 kb)

Supplementary material 3 (DOCX 16 kb)

Supplementary material 4 (DOCX 20 kb)

Supplementary material 5 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, S., Ishii, G., Matsuwaki, R. et al. Ezrin-expressing lung adenocarcinoma cells and podoplanin-positive fibroblasts form a malignant microenvironment. J Cancer Res Clin Oncol 141, 475–484 (2015). https://doi.org/10.1007/s00432-014-1851-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-014-1851-8

Keywords

Navigation