Skip to main content

Advertisement

Log in

Down-regulation of JAK1 by RNA interference inhibits growth of the lung cancer cell line A549 and interferes with the PI3K/mTOR pathway

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

The mammalian Janus kinase (JAK) family plays a critical role in cytokine/growth factor signalling pathways and is associated with human cancers. In this study, we explored the role of JAK1 in the non-small cell lung cancer (NSCLC) cell line A549 and its molecular crosstalk with the phosphatidyl inositol-3-kinase (PI3K)/mammalian target of the rapamycin (mTOR) pathway.

Methods

One hundred and two NSCLC and 50 normal lung specimens were collected after surgical resection. JAK1 expression and phosphorylation were determined via immunohistochemical staining (IHC) assay. A stable knockdown of JAK1 was performed in A549 cells by RNA interference. Stable cell proliferation, cell cycle, apoptosis, and invasion were characterised in vitro. Tumourigenicity was analysed in vivo. The NSCLC xenograft protein expression of PI3K/mTOR pathway molecules was determined by Western blot assay.

Results

JAK1 expression was higher in NSCLC tissues than in normal lung tissues (P < 0.01). JAK1 knockdown in A549 cells significantly inhibited cell proliferation and invasion while promoting cell arrest at G0/G1 phase (all P < 0.05). The xenograft model showed that JAK1 suppression inhibited tumour growth compared with normal control (P < 0.05). Moreover, JAK1 knockdown inhibited mTOR or P70 ribosomal protein S6 kinase (P70S6K) phosphorylation, but increased glycogen synthase kinase-3α (GSK-3α) and B-cell lymphoma-extra large (Bcl-xl) phosphorylation. Total protein expression and Akt1/2 phosphorylated status remained unchanged.

Conclusion

Our study suggests that JAK1 expression and phosphorylation is abnormal in NSCLC tissues. The knockdown of JAK1 significantly inhibits tumourigenicity of the A549 cell line and demonstrates that crosstalk between the JAK1 and PI3K/mTOR pathways is involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akar U, Ozpolat B, Mehta K, Lopez-Berestein G, Zhang D, Ueno NT, Hortobagyi GN, Arun B (2010) Targeting p70S6K prevented lung metastasis in a breast cancer xenograft model. Mol Cancer Ther 9(5):1180–1187

    Article  PubMed  CAS  Google Scholar 

  • Cousens LP, Goulette FA, Darnowski JW (2005) JAK-mediated signaling inhibits Fas ligand-induced apoptosis independent of de novo protein synthesis. J Immunol 174(1):320–327

    PubMed  CAS  Google Scholar 

  • Dal Col J, Zancai P, Terrin L, Guidoboni M, Ponzoni M, Pavan A, Spina M, Bergamin S, Rizzo S, Tirelli U, De Rossi A, Doglioni C, Dolcetti R (2008) Distinct functional significance of Akt and mTOR constitutive activation in mantle cell lymphoma. Blood 111(10):5142–5151

    Article  PubMed  CAS  Google Scholar 

  • Diehl JA, Cheng M, Roussel MF, Sherr CJ (1998) Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12(22):3499–3511

    Article  PubMed  CAS  Google Scholar 

  • Ferrajoli A, Faderl S, Ravandi F, Estrov Z (2006) The JAK-STAT pathway: a therapeutic target in hematological malignancie. Curr Cancer Drug Targets 6(8):671–679

    Article  PubMed  CAS  Google Scholar 

  • Freed DH, Borowiec AM, Angelovska T, Dixon IM (2003) Induction of protein synthesis in cardiac fibroblasts by cardiotrophin-1: integration of multiple signaling pathways. Cardiovasc Res 60(2):365–375

    Article  PubMed  CAS  Google Scholar 

  • Freitas S, Moore DH, Michael H, Kelley MR (2003) Studies of apurinic/apyrimidinic endonuclease/ref-1 expression in epithelial ovarian cancer: correlations with tumor progression and platinum resistance. Clin Cancer Res 9(13):4689–4694

    PubMed  CAS  Google Scholar 

  • Gamero AM, Larner AC (2001) Vanadate facilitates interferon alpha-mediated apoptosis that is dependent on the Jak/Stat pathway. J Biol Chem 276(17):13547–13553

    PubMed  CAS  Google Scholar 

  • Gao B, Shen X, Kunos G, Meng Q, Goldberg ID, Rosen EM, Fan S (2001) Constitutive activation of JAK-STAT3 signaling by BRCA1 in human prostate cancer cells. FEBS Lett 488(3):179–184

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Benito M, Balsas P, Carvajal-Vergara X, Pandiella A, Anel A, Marzo I, Naval J (2007) Mechanism of apoptosis induced by INF-α in human myeloma cells: role of Jak1 and Bim and potentiation by rapamycin. Cell Signal 19(4):844–854

    Article  PubMed  Google Scholar 

  • Harris TE, Lawrence JC Jr. (2003) TOR signaling. Sci STKE 212: re15

  • Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18(16):1926–1945

    Article  PubMed  CAS  Google Scholar 

  • He B, You L, Xu Z, Mazieres J, Lee AY, Jablons DM (2004) Activity of the suppressor of cytokine signaling-3 promoter in human non-small-cell lung cancer. Clin Lung Cancer 5(6):366–370

    Article  PubMed  CAS  Google Scholar 

  • Huang HM, Lin YL, Chen CH, Chang TW (2005) Simultaneous activation of JAK1 and JAK2 confers IL-3 independent growth on Ba/F3 pro-B cells. J Cell Biochem 96(2):361–375

    Article  PubMed  CAS  Google Scholar 

  • Ihle JN (1995) The Janus protein tyrosine kinase family and its role in cytokine signaling. Adv Immunol 60:1–35

    Article  PubMed  CAS  Google Scholar 

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59(4):225–249

    Article  PubMed  Google Scholar 

  • Jeong EG, Kim MS, Nam HK, Min CK, Lee S, Chung YJ, Yoo NJ, Lee SH (2008) Somatic mutations of JAK1 and JAK3 in acute leukemias and solid cancers. Clin Cancer Res 14(12):3716–3721

    Article  PubMed  CAS  Google Scholar 

  • Kaur N, Wohlhueter AL, Halvorsen SW (2002) Activation and inactivation of signal transducers and activators of transcription by ciliary neurotrophic factor in neuroblastoma cells. Cell Signal 14(5):419–429

    Article  PubMed  CAS  Google Scholar 

  • Kong D, Banerjee S, Huang W, Li Y, Wang Z, Kim HR, Sarkar FH (2008) Mammalian target of rapamycin repression by 3, 3′-diindolylmethane inhibits invasion and angiogenesis in platelet-derived growth factor-D-overexpressing PC3 cells. Cancer Res 68(6):1927–1934

    Article  PubMed  CAS  Google Scholar 

  • Kurdi M, Booz GW (2007) Jak inhibition, but not Stat1 knockdown, blocks the synergistic effect of IFN-gamma on Fas-induced apoptosis of A549 human non-small cell lung cancer cells. J Interferon Cytokine Res 27(1):23–31

    Article  PubMed  CAS  Google Scholar 

  • Lam P, Sian Lim K, Mei Wang S, Hui KM (2005) A microarray study to characterize the molecular mechanism of TIMP-3-mediated tumor rejection. Mol Ther 12(1):144–152

    Article  PubMed  CAS  Google Scholar 

  • Langlais P, Yi Z, Mandarino LJ (2011) The Identification of Raptor as a Substrate for p44/42 MAPK. Endocrinology 152(4):1264–1273

    Article  PubMed  CAS  Google Scholar 

  • Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM, Royer RE, Vander Jagt DL, Semenza GL, Dang CV (2009) Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA 107(5):2037–2042

    Article  Google Scholar 

  • Li J, Favata M, Kelley JA, Caulder E, Thomas B, Wen X, Sparks RB, Arvanitis A, Rogers JD, Combs AP, Vaddi K, Solomon KA, Scherle PA, Newton R, Fridman JS (2010) INCB16562, a JAK1/2 selective inhibitor, is efficacious against multiple myeloma cells and reverses the protective effects of cytokine and stromal cell support. Neoplasia 12(1):28–38

    PubMed  CAS  Google Scholar 

  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934

    Article  PubMed  CAS  Google Scholar 

  • Memmott RM, Dennis PA (2009) The role of the Akt/mTOR pathway in tobacco carcinogen-induced lung tumorigenesis. Clin Cancer Res 16(1):4–10

    Article  PubMed  Google Scholar 

  • Noguchi M, Ropars V, Roumestand C, Suizu F (2007) Proto-oncogene TCL1: more than just a coactivator for Akt. FASEB J 21(10):2273–2284

    Article  PubMed  CAS  Google Scholar 

  • Oh H, Fujio Y, Kunisada K, Hirota H, Matsui H, Kishimoto T, Yamauchi-Takihara K (1998) Activation of phosphatidylinositol 3-kinase through glycoprotein 130 induces protein kinase B and p70 S6 kinase phosphorylation in cardiac myocytes. J Biol Chem 273(16):9703–9710

    Article  PubMed  CAS  Google Scholar 

  • O’Shea JJ, Gadina M, Schreiber RD (2002) Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 109(Suppl):S121–S131

    Article  PubMed  Google Scholar 

  • Petritsch C, Beug H, Balmain A, Oft M (2000) TGF-beta inhibits p70 S6 kinase via protein phosphatase 2A to induce G(1) arrest. Genes Dev 14(24):3093–3101

    Article  PubMed  CAS  Google Scholar 

  • Ramanathan A, Schreiber SL (2009) Direct control of mitochondrial function by mTOR. Proc Natl Acad Sci USA 106(52):22229–22232

    Article  PubMed  CAS  Google Scholar 

  • Rane SG, Reddy EP (2000) Janus kinases: components of multiple signaling pathways. Oncogene 19(49):5662–5679

    Article  PubMed  CAS  Google Scholar 

  • Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DC, Menzies FM, Moreau K, Narayanan U, Renna M, Siddiqi FH, Underwood BR, Winslow AR, Rubinsztein DC (2011) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90(4):1383–1435

    Article  Google Scholar 

  • Saxena NK, Sharma D, Ding X, Lin S, Marra F, Merlin D, Anania FA (2007) Concomitant activation of the JAK/STAT, PI3K/AKT, and ERK signaling is involved in leptin-mediated promotion of invasion and migration of hepatocellular carcinoma cells. Cancer Res 67(6):2497–2507

    Article  PubMed  CAS  Google Scholar 

  • Schindler CW (2002) Series introduction. JAK-STAT signaling in human disease. J Clin Invest 109(9):1133–1137

    PubMed  CAS  Google Scholar 

  • Shiojima I, Walsh K (2006) Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev 20(24):3347–3365

    Article  PubMed  CAS  Google Scholar 

  • Song L, Rawal B, Nemeth JA, Haura EB (2011) JAK1 activates STAT3 activity in non-small-cell lung cancer cells and IL-6 neutralizing antibodies can suppress JAK1-STAT3 signaling. Mol Cancer Ther 10(3):481–494

    Article  PubMed  CAS  Google Scholar 

  • Sussman MA, Volkers M, Fischer K, Bailey B, Cottage CT, Din S, Gude N, Avitabile D, Alvarez R, Sundararaman B, Quijada P, Mason M, Konstandin MH, Malhowski A, Cheng Z, Khan M, McGregor M (2011) Myocardial AKT: the omnipresent nexus. Physiol Rev 91(3):1023–1070

    Article  PubMed  CAS  Google Scholar 

  • Tang JM, He QY, Guo RX, Chang XJ (2006) Phosphorylated Akt overexpression and loss of PTEN expression in non-small cell lung cancer confers poor prognosis. Lung Cancer 51(2):181–191

    Article  PubMed  Google Scholar 

  • Tsikitis M, Zhang Z, Edelman W, Zagzag D, Kalpana GV (2005) Genetic ablation of Cyclin D1 abrogates genesis of rhabdoid tumors resulting from Ini1 loss. Proc Natl Acad Sci USA 102(34):12129–12134

    Article  PubMed  CAS  Google Scholar 

  • Upreti M, Galitovskaya EN, Chu R, Tackett AJ, Terrano DT, Granell S, Chambers TC (2008) Identification of the major phosphorylation site in Bcl-xL induced by microtubule inhibitors and analysis of its functional significance. J Biol Chem 283(51):35517–35525

    Article  PubMed  CAS  Google Scholar 

  • Verma A, Kambhampati S, Parmar S, Platanias LC (2003) Jak family of kinases in cancer. Cancer Metastasis Rev 22(4):423–434

    Article  PubMed  CAS  Google Scholar 

  • Vignot S, Faivre S, Aguirre D, Raymond E (2005) mTOR-targeted therapy of cancer with rapamycin derivatives. Ann Oncol 16(4):525–537

    Article  PubMed  CAS  Google Scholar 

  • Wilson W 3rd, Baldwin AS (2008) Maintenance of constitutive IkappaB kinase activity by glycogen synthase kinase-3alpha/beta in pancreatic cancer. Cancer Res 68(19):8156–8163

    Article  PubMed  CAS  Google Scholar 

  • Xiang Z, Zhao Y, Mitaksov V, Fremont DH, Kasai Y, Molitoris A, Ries RE, Miner TL, McLellan MD, DiPersio JF, Link DC, Payton JE, Graubert TA, Watson M, Shannon W, Heath SE, Nagarajan R, Mardis ER, Wilson RK, Ley TJ, Tomasson MH (2008) Identification of somatic JAK1 mutations in patients with acute myeloid leukemia. Blood 111(9):4809–4812

    Article  PubMed  CAS  Google Scholar 

  • Xie HJ, Bae HJ, Noh JH, Eun JW, Kim JK, Jung KH, Ryu JC, Ahn YM, Kim SY, Lee SH, Yoo NJ, Lee JY, Park WS, Nam SW (2009) Mutational analysis of JAK1 gene in human hepatocellular carcinoma. Neoplasma 56(2):136–140

    Article  PubMed  CAS  Google Scholar 

  • Xiong H, Zhang ZG, Tian XQ, Sun DF, Liang QC, Zhang YJ, Lu R, Chen YX, Fang JY (2008) Inhibition of JAK1, 2/STAT3 signaling induces apoptosis, cell cycle arrest, and reduces tumor cell invasion in colorectal cancer cells. Neoplasia 10(3):287–297

    PubMed  CAS  Google Scholar 

  • Yeh YT, Ou-Yang F, Chen IF, Yang SF, Su JH, Hou MF, Yuan SS (2007) Altered p-JAK1 expression is associated with estrogen receptor status in breast infiltrating ductal carcinoma. Oncol Rep 17(1):35–39

    PubMed  CAS  Google Scholar 

  • Yoshizawa A, Fukuoka J, Shimizu S, Shilo K, Franks TJ, Hewitt SM, Fujii T, Cordon-Cardo C, Jen J, Travis WD (2010) Overexpression of phospho-eIF4E is associated with survival through AKT pathway in non-small cell lung cancer. Clin Cancer Res 16(1):240–248

    Article  PubMed  CAS  Google Scholar 

  • Zeng ZZ, Yellaturu CR, Neeli I, Rao GN (2002) 5(S)-hydroxyeicosatetraenoic acid stimulates DNA synthesis in human microvascular endothelial cells via activation of Jak/STAT and phosphatidylinositol 3-kinase/Akt signaling, leading to induction of expression of basic fibroblast growth factor 2. J Biol Chem 277(43):41213–41219

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Phiel CJ, Spece L, Gurvich N, Klein PS (2003) Inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3) in response to lithium. Evidence for autoregulation of GSK-3. J Biol Chem 278(35):33067–33077

    Article  PubMed  CAS  Google Scholar 

  • Zhang MX, Zhao X, Wang ZG, Zhao WM, Wang YS (2010) Constitutive activation of signal transducer and activator of transcription 3 regulates expression of vascular endothelial growth factor in human meningioma differentiation. J Cancer Res Clin Oncol 136(7):981–988

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Huang S (2010) The complexes of mammalian target of rapamycin. Curr Protein Pept Sci 11(6):409–424

    Article  PubMed  CAS  Google Scholar 

  • Zhou HY, Wong AS (2006) Activation of p70S6K induces expression of matrix metalloproteinase 9 associated with hepatocyte growth factor-mediated invasion in human ovarian cancer cells. Endocrinology 147(5):2557–2566

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Tan M, Stone Hawthorne V, Klos KS, Lan KH, Yang Y, Yang W, Smith TL, Shi D, Yu D (2004) Activation of the Akt/mammalian target of rapamycin/4E-BP1 pathway by ErbB2 overexpression predicts tumor progression in breast cancers. Clin Cancer Res 10(20):6779–6788

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the patients and their families for participating in our study for their patience and cooperation. This work was supported by grants from the National Basic Research Program of China (2009CB941200) and the Nature Science Foundation of China (grant 30771228 to H.X. and grant 30771227 to X.M.).

Conflict of interest

We declare that we have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianming Mo or Weimin Li.

Additional information

D. Liu and Y. Huang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, D., Huang, Y., Zeng, J. et al. Down-regulation of JAK1 by RNA interference inhibits growth of the lung cancer cell line A549 and interferes with the PI3K/mTOR pathway. J Cancer Res Clin Oncol 137, 1629–1640 (2011). https://doi.org/10.1007/s00432-011-1037-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-011-1037-6

Keywords

Navigation