Skip to main content
Log in

The association between phthalate exposure and pubertal development

  • RESEARCH
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Antiandrogenic effect of phthalates have been reported; however, results regarding the effect of phthalate exposure in pubertal children have been inconsistent. We aimed to investigate the relationship between phthalate exposure and pubertal development, especially whether high molecular weight phthalates (HMWP) and low molecular weight phthalates (LMWP) are differently associated in boys and girls. Urinary phthalate metabolites (4 HMWPs and 3 LMWPs) in Korean children (236 boys and 202 girls, aged 10 to 12 years) were measured. The association between phthalate levels and pubertal development (pubertal stages self-reported by parents and sex steroid levels) was analyzed by generalized linear regression after adjusting for age, body mass index z score, and premature birth and/or low birth weight. Both the highest quartile of HMWP (Q4 vs Q1, adjusted odds ratio [OR], 0.238; 95% confidence interval [CI], 0.090–0.627; p = 0.004) and LMWP (Q4 vs Q1, adjusted OR, 0.373; 95% CI, 0.151–0.918; p = 0.032) were inversely associated with pubertal stages in boys, whereas the highest quartile of LMWP (Q4 vs Q1, adjusted OR, 2.431; 95% CI, 1.024–5.768; p = 0.044) was significantly related to advanced pubertal stages in girls. Testosterone levels in boys were significantly lower at the highest quartile of HMWP (adjusted β = − 0.251; 95% CI, − 0.476 to − 0.027; p = 0.028). However, in girls, we could not find any significant relationship between HMWP or LMWP and estradiol levels.

Conclusions: Our results suggest that phthalate exposure, especially exposure to the HMWP, may have inverse association with male pubertal development. Further investigation is required to verify the relationship of phthalate exposure and pubertal development in girls.

What is Known:

• Exposure to phthalates may have antiandrogenic effects.

• Studies on the association between phthalates and pubertal development have yielded inconsistent results.

What is New:

• Phthalate levels were inversely associated with self-reported pubertal stages in boys.

• Exposure to phthalates might have a negative influence on male pubertal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data supporting the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

BMI:

Body mass index

CI:

Confidence interval

DBP:

Di-butyl phthalate

DEHP:

Di-(2-ethylhexyl) phthalate

DEP:

Di-ethyl phthalate

DiBP:

Di-isobutyl phthalate

DiNP:

Di-isononyl phthalate

DMP:

Di-methyl phthalate

DnBP:

Di-n-butyl phthalate

HMWP:

High molecular weight phthalate

IQR:

Interquartile range

LMWP:

Low molecular weight phthalate

LOQ:

Limit of quantification

MBzP:

Mono-benzyl phthalate

MCCP:

Mono-(3-carboxypropyl) phthalate

MECPP:

Mono-(2-ethyl-5-carboxypentyl) phthalate

MEHHP:

Mono-(2-ethyl-5-hydroxyhexyl) phthalate

MEOHP:

Mono-(2-ethyl-5-oxohexyl) phthalate

MEP:

Mono-ethyl phthalate

MHBP:

Mono-(3-hydroxybutyl) phthalate

MiBP:

Mono-isobutyl phthalate

MnBP:

Mono-n-butyl phthalate

MNCP:

Mono-carboxyisononyl phthalate

OR:

Odds ratio

References

  1. Kim YJ, Kwon A, Jung MK, Kim KE, Suh J, Chae HW, Kim DH, Ha S, Seo GH, Kim H-S (2019) Incidence and prevalence of central precocious puberty in Korea: an epidemiologic study based on a national database. J Pediatr 208:221–228. https://doi.org/10.1016/j.peds.2018.12.022

    Article  PubMed  Google Scholar 

  2. Shim YS, Lee HS, Hwang JS (2022) Genetic factors in precocious puberty. Clin Exp Pediatr 65(4):172–181. https://doi.org/10.3345/cep.2021.00521

    Article  CAS  PubMed  Google Scholar 

  3. Heo YJ, Kim HS (2021) Ambient air pollution and endocrinologic disorders in childhood. Ann Pediatr Endocrinol Metab 26(3):158–170. https://doi.org/10.6065/apem.2142132.066

    Article  PubMed  PubMed Central  Google Scholar 

  4. Suh J, Choi HS, Kwon A, Chae HW, Kim H-S (2020) Effect of agricultural pesticide on precocious puberty in urban children: an exploratory study. Clin Exp Pediatr 63(4):146–150. https://doi.org/10.3345/cep.2019.00416

    Article  CAS  PubMed  Google Scholar 

  5. Jeon GW (2022) Bisphenol A leaching from polycarbonate baby bottles into baby food causes potential health issues. Clin Exp Pediatr 65(9):450–452. https://doi.org/10.3345/cep.2022.00661

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brock JW, Caudill SP, Silva MJ, Needham LL, Hilborn ED (2002) Phthalate monoesters levels in the urine of young children. Bull Environ Contam Toxicol 68(3):309–314. https://doi.org/10.1007/s001280255

    Article  CAS  PubMed  Google Scholar 

  7. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC (2009) Endocrine-disrupting chemicals: an endocrine society scientific statement. Endocr Rev 30(4):293–342. https://doi.org/10.1210/er.2009-0002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hauser R, Calafat AM (2005) Phthalates and human health. Occup Environ Med 62(11):806–818. https://doi.org/10.1136/oem.2004.017590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Koch HM, Rüther M, Schütze A, Conrad A, Pälmke C, Apel P, Brüning T, Kolossa-Gehring M (2017) Phthalate metabolites in 24-h urine samples of the German environmental specimen bank (ESB) from 1988 to 2015 and a comparison with US NHANES data from 1999 to 2012. Int J Hyg Environ Health 220(2 Pt A):130–141. https://doi.org/10.1016/j.ijheh.2016.11.003

    Article  CAS  PubMed  Google Scholar 

  10. Zota AR, Calafat AM, Woodruff TJ (2014) Temporal trends in phthalate exposures: findings from the national health and nutrition examination survey, 2001–2010. Environ Health Perspect 122(3):235–241. https://doi.org/10.1289/ehp.1306681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Radke EG, Braun JM, Meeker JD, Cooper GS (2018) Phthalate exposure and male reproductive outcomes: a systematic review of the human epidemiological evidence. Environ Int 121(1):764–793. https://doi.org/10.1016/j.envint.2018.07.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mínguez-Alarcón L, Burns J, Williams PL, Korrick SA, Lee MM, Bather JR, Kovalev SV, Sokolov SA, Lebedev AT, Smigulina L et al (2022) Urinary phthalate metabolite concentrations during four windows spanning puberty (prepuberty through sexual maturity) and association with semen quality among young Russian men. Int J Hyg Environ Health 243:113977. https://doi.org/10.1016/j.ijheh.2022.113977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Axelsson J, Rylander L, Rignell-Hydbom A, Jönsson BA, Lindh CH, Giwercman A (2015) Phthalate exposure and reproductive parameters in young men from the general Swedish population. Environ Int 85:54–60. https://doi.org/10.1016/j.envint.2015.07.005

    Article  CAS  PubMed  Google Scholar 

  14. Schug TT, Janesick A, Blumberg B, Heindel JJ (2011) Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol 127(3–5):204–215. https://doi.org/10.1016/j.jsbmb.2011.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sathyanarayana S, Grady R, Barrett ES, Redmon B, Nguyen RHN, Barthold JS, Bush NR, Swan SH (2016) First trimester phthalate exposure and male newborn genital anomalies. Environ Res 151:777–782. https://doi.org/10.1016/j.envres.2016.07.043

    Article  CAS  PubMed  Google Scholar 

  16. Swan SH, Sathyanarayana S, Barrett ES, Janssen S, Liu F, Nguyen RH, Redmon JB, TIDES Study Team (2015) First trimester phthalate exposure and anogenital distance in newborns. Hum Reprod 30(4):963–972. https://doi.org/10.1093/humrep/deu363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harley KG, Berger KP, Kogut K, Parra K, Lustig RH, Greenspan LC, Calafat AM, Ye X, Eskenazi B (2019) Association of phthalates, parabens and phenols found in personal care products with pubertal timing in girls and boys. Hum Reprod 34(1):109–117. https://doi.org/10.1093/humrep/dey337

    Article  CAS  PubMed  Google Scholar 

  18. Tassinari R, Tait S, Busani L, Martinelli A, Narciso L, Valeri M, Gastaldelli A, Deodati A, Rocca CL, Maranghi F (2021) Metabolic, reproductive and thyroid effects of bis(2-ehtylhexyl) phthalate (DEHP) orally administered to male and female juvenile rats at dose levels derived from children biomonitoring study. Toxicology 449:152653. https://doi.org/10.1016/j.tox.2020.152653

    Article  CAS  PubMed  Google Scholar 

  19. Buck Louis GM, Gray LE Jr, Marcus M, Ojeda SR, Pescovitz OH, Witchel SF, Sippell W, Abbott DH, Soto A, Tyl RW et al (2008) Environmental factors and puberty timing: expert panel research needs. Pediatrics 121(Suppl 3):S192–S207. https://doi.org/10.1542/peds.1813E

    Article  PubMed  Google Scholar 

  20. Binder AM, Corvalan C, Calafat AM, Ye X, Mericq V, Pereira A, Michels KB (2018) Childhood and adolescent phenol and phthalate exposure and the age of menarche in Latina girls. Environ Health 17(1):32. https://doi.org/10.1186/s12940-018-0376-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Koch HM, Lorber M, Christensen KLY, Pälmke C, Koslitz S, Brüning T (2013) Identifying sources of phthalate exposure with human biomonitoring: results of a 48h fasting study with urine collection and personal activity patterns. Int J Hyg Environ Health 216(6):672–681. https://doi.org/10.1016/j.ijheh.2012.12.002

    Article  CAS  PubMed  Google Scholar 

  22. Gascon M, Casas M, Morales E, Valvi D, Ballesteros-Gómez A, Luque N, Rubio S, Monfort N, Ventura R, Martínez D et al (2015) Prenatal exposure to bisphenol A and phthalates and childhood respiratory tract infections and allergy. J Allergy Clin Immunol 135(2):370–378. https://doi.org/10.1016/j.jaci.2014.09.030

    Article  CAS  PubMed  Google Scholar 

  23. Colon I, Caro D, Bourdony CJ, Rosario O (2000) Identification of phthalate esters in the serum of young Puerto Rican girls with premature breast development. Environ Health Perspect 108(9):895–900. https://doi.org/10.1289/ehp.108-2556932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wolff MS, Teitelbaum SL, McGovern K, Pinney SM, Windham GC, Galvez M, Pajak A, Rybak M, Calafat AM, Kushi LH et al (2015) Environmental phenols and pubertal development in girls. Environ Int 84:174–180. https://doi.org/10.1016/j.envint.2015.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Buttke DE, Sircar K, Martin C (2012) Exposures to endocrine-disrupting chemicals and age of menarche in adolescent girls in NHANES (2003–2008). Environ Health Perspect 120(11):1613–1618. https://doi.org/10.1289/ehp.1104748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Frederiksen H, Sørensen K, Mouritsen A, Aksglaede L, Hagen CP, Petersen JH, Skakkebaek NE, Andersson AM, Juul A (2012) High urinary phthalate concentration associated with delayed pubarche in girls. Int J Androl 35(3):216–226. https://doi.org/10.1111/j.1365-2605.2012.01260.x

    Article  CAS  PubMed  Google Scholar 

  27. Mouritsen A, Frederiksen H, Sørensen K, Aksglaede L, Hagen C, Skakkebaek NE, Main KM, Andersson AM, Juul A (2013) Urinary phthalates from 168 girls and boys measured twice a year during a 5-year period: associations with adrenal androgen levels and puberty. J Clin Endocrinol Metab 98(9):3755–3764. https://doi.org/10.1210/jc.2013-1284

    Article  CAS  PubMed  Google Scholar 

  28. Wolff MS, Pajak A, Pinney SM, Windham GC, Galvez M, Rybak M, Silva MJ, Ye X, Calafat AM, Kushi LH et al (2017) Associations of urinary phthalate and phenol biomarkers with menarche in a multiethnic cohort of young girls. Reprod Toxicol 67:56–64. https://doi.org/10.1016/j.reprotox.2016.11.009

    Article  CAS  PubMed  Google Scholar 

  29. Swan SH (2008) Environmental phthalate exposure in relation to reproductive outcomes and other health endpoints in humans. Environ Res 108(2):177–184. https://doi.org/10.1016/j.envres.2008.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mieritz MG, Frederiksen H, Sorensen K, Aksglaede L, Mouritsen A, Hagen CP, Skakkebaek NE, Anderson AM, Juul A (2012) Urinary phthalate excretion in 555 healthy Danish boys with and without pubertal gynaecomastia. Int J Androl 35(3):227–235. https://doi.org/10.1111/j.1365-2605.2012.01279.x

    Article  CAS  PubMed  Google Scholar 

  31. Rasmussen AR, Wohlfahrt-Veje C, Tefre de Renzy-Martin K, Hagen CP, Tinggaard J, Mouritsen A, Mieritz MG, Main KM (2015) Validity of self-assessment of pubertal maturation. Pediatrics 135(1):86–93. https://doi.org/10.1542/peds.2014-0793

    Article  PubMed  Google Scholar 

  32. Nelson RE, Grebe SK, O’Kane DJ, Singh RJ (2004) Liquid chromatography–tandem mass spectrometry assay for simultaneous measurement of estradiol and estrone in human plasma. Clin Chem 50(2):373–384. https://doi.org/10.1373/clinchem.2003.025478

    Article  CAS  PubMed  Google Scholar 

  33. Paul A, Deans R, Viner R, Creighton SM (2011) Pubertal development and sexuality in female adolescents born preterm: a review of the literature. Int J Adolesc Med Health 23(3):175–179. https://doi.org/10.1515/ijamh.2011.040

    Article  PubMed  Google Scholar 

  34. Mylchreest E, Wallace DG, Cattley RC, Foster PM (2000) Dose-dependent alterations in androgen-regulated male reproductive development in rats exposed to Di(n-butyl) phthalate during late gestation. Toxicol Sci 55(1):143–151. https://doi.org/10.1093/toxsci/55.1.143

    Article  CAS  PubMed  Google Scholar 

  35. Saillenfait AM, Sabaté JP, Gallissot F (2008) Diisobutyl phthalate impairs the androgen-dependent reproductive development of the male rat. Reprod Toxicol 26(2):107–115. https://doi.org/10.1016/j.reprotox.2008.07.006

    Article  CAS  PubMed  Google Scholar 

  36. Prince FP (2001) The triphasic nature of Leydig cell development in humans, and comments on nomenclature. J Endocrinol 168(2):213–216. https://doi.org/10.1677/joe.0.1680213

    Article  CAS  PubMed  Google Scholar 

  37. Wu X, Wan S, Lee MM (2007) Key factors in the regulation of fetal and postnatal Leydig cell development. J Cell Physiol 213(2):429–433. https://doi.org/10.1002/jcp.21231

    Article  CAS  PubMed  Google Scholar 

  38. Skakkebaek NE, Rajpert-De Meyts E, Main KM (2001) Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod 16(5):972–978. https://doi.org/10.1093/humrep/16.5.972

    Article  CAS  PubMed  Google Scholar 

  39. Akingbemi BT, Youker RT, Sottas CM, Ge R, Katz E, Klinefelter GR, Zirkin BR, Hardy MP (2001) Modulation of rat Leydig cell steroidogenic function by di(2-ethylhexyl)phthalate. Biol Reprod 65(4):1252–1259. https://doi.org/10.1095/biolreprod65.4.1252

    Article  CAS  PubMed  Google Scholar 

  40. Chang WH, Li SS, Wu MH, Pan HA, Lee CC (2015) Phthalates might interfere with testicular function by reducing testosterone and insulin-like factor 3 levels. Hum Reprod 30(11):2658–2670. https://doi.org/10.1093/humrep/dev225

    Article  CAS  PubMed  Google Scholar 

  41. Motohashi M, Wempe MF, Mutou T, Takahashi H, Kansaku N, Ikegami M, Inomata T, Asari M, Wakui S (2016) Male rats exposed in utero to di(n-butyl) phthalate: age-related changes in Leydig cell smooth endoplasmic reticulum and testicular testosterone-biosynthesis enzymes/proteins. Reprod Toxicol 59:139–146. https://doi.org/10.1016/j.reprotox.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  42. Svechnikov K, Svechnikova I, Söder O (2008) Inhibitory effects of mono-ethylhexyl phthalate on steroidogenesis in immature and adult rat Leydig cells in vitro. Reprod Toxicol 25(4):485–490. https://doi.org/10.1016/j.reprotox.2008.05.057

    Article  CAS  PubMed  Google Scholar 

  43. Corton JC, Lapinskas PJ (2005) Peroxisome proliferator-activated receptors: mediators of phthalate ester-induced effects in the male reproductive tract? Toxicol Sci 83(1):4–17. https://doi.org/10.1093/toxsci/kfi011

    Article  CAS  PubMed  Google Scholar 

  44. Tena-Sempere M (2010) Kisspeptin/GPR54 system as potential target for endocrine disruption of reproductive development and function. Int J Androl 33(2):360–368. https://doi.org/10.1111/j.1365-2605.2009.01012.x

    Article  CAS  PubMed  Google Scholar 

  45. Bellingham M, Fowler PA, Amezaga MR, Rhind SM, Cotinot C, Mandon-Pepin B, Sharpe RM, Evans NP (2009) Exposure to a complex cocktail of environmental endocrine-disrupting compounds disturbs the kisspeptin/GPR54 system in ovine hypothalamus and pituitary gland. Environ Health Perspect 117(10):1556–1562. https://doi.org/10.1289/ehp.0900699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yeung BH, Wan HT, Law AY, Wong CK (2011) Endocrine disrupting chemicals: Multiple effects on testicular signaling and spermatogenesis. Spermatogenesis 1(3):231–239. https://doi.org/10.4161/spmg.1.3.18019

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by a grant from the Seongnam Atopy Project of the Seongnam City Government, Republic of Korea and Korea Health Technology R&D Through the Korea (HR22C1605030022).

Author information

Authors and Affiliations

Authors

Contributions

Mi Ra Kim, Man Yong Han, and Eun-Gyong Yoo contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Mo Kyung Jung, Hye Mi Jee, Eun Kyo Ha, Sanghoo Lee, Man Yong Han, and Eun-Gyong Yoo. The first draft of the manuscript was written by Mi Ra Kim. Man Yong Han and Eun-Gyong Yoo commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Man Yong Han or Eun-Gyong Yoo.

Ethics declarations

Ethical approval

This study was performed in accordance with the Declaration of Helsinki. And this study was approved by the Institutional Review Board of CHA University (2017–04-049).

Consent to participate

Written informed consents were obtained from parents or guardians of all participants.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Communicated by Peter de Winter

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M.R., Jung, M.K., Jee, H.M. et al. The association between phthalate exposure and pubertal development. Eur J Pediatr 183, 1675–1682 (2024). https://doi.org/10.1007/s00431-023-05416-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-023-05416-z

Keywords

Navigation