Skip to main content
Log in

Impact of preterm birth on muscle mass and function: a systematic review and meta-analysis

  • REVIEW
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Individuals born preterm present lower exercise capacity. Along with the cardiopulmonary responses and activity level, muscle strength is a key determinant of exercise capacity. This systematic review aimed to summarize the current knowledge on the impact of preterm birth on skeletal muscle mass and function across the lifespan. The databases PubMed, MEDLINE, EBM, Embase, CINAHL Plus, Global Index Medicus, and Google Scholar were searched using keywords and MeSH terms related to skeletal muscle, preterm birth, and low birth weight. Two independent reviewers undertook study selection, data extraction, and quality appraisal using Covidence review management. Data were pooled to estimate the prematurity effect on muscle mass and function using the R software. From 4378 studies retrieved, 132 were full-text reviewed and 25 met the inclusion/exclusion criteria. Five studies presented a low risk of bias, and 5 had a higher risk of bias due to a lack of adjustment for confounding factors and presenting incomplete outcomes. Meta-analyses of pooled data from homogenous studies indicated a significant reduction in muscle thickness and jump test (muscle power) in individuals born preterm versus full-term with standardized mean difference and confidence interval of − 0.58 (0.27, 0.89) and − 0.45 (0.21, 0.69), respectively.

    Conclusion: Overall, this systematic review summarizing the existing literature on the impact of preterm birth on skeletal muscle indicates emerging evidence that individuals born preterm, display alteration in the development of their skeletal muscle mass and function. This work also highlights a clear knowledge gap in understanding the effect of preterm birth on skeletal muscle development.

What is Known:

• Preterm birth, which occurs at a critical time of skeletal muscle development and maturation, impairs the development of different organs and tissues leading to a higher risk of comorbidities such as cardiovascular diseases.

• Preterm birth is associated with reduced exercise capacity.

What is New:

• Individuals born preterm display alterations in muscle mass and function compared to individuals born at term from infancy to adulthood.

• There is a need to develop preventive or curative interventions to improve skeletal muscle health in preterm-born individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data is available for sharing upon reasonable request to the corresponding authors.

References

  1. Luu TM, Katz SL, Leeson P, Thébaud B, Nuyt AM (2016) Preterm birth: risk factor for early-onset chronic diseases. CMAJ 188:736–746

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chehade H, Simeoni U, Guignard JP, Boubred F (2018) Preterm birth: long term cardiovascular and renal consequences. Curr Pediatr Rev 14:219–226

    Article  PubMed  PubMed Central  Google Scholar 

  3. Clemm H, Vollsaeter M, Thorsen E, Roksund O, Halvorsen T (2014) Exercise capacity at 18 years of age in two extremely preterm born cohorts from the 1980’s and 1990’s. European Respiratory Journal Conference: European Respiratory Society Annual Congress 44

  4. Clemm HH, Vollsæter M, Røksund OD, Eide GE, Markestad T, Halvorsen T (2014) Exercise capacity after extremely preterm birth. Development from adolescence to adulthood. Ann Am Thorac Soc 11:537–545

    Article  PubMed  Google Scholar 

  5. Edwards MO, Kotecha SJ, Lowe J, Watkins WJ, Henderson AJ, Kotecha S (2015) Effect of preterm birth on exercise capacity: a systematic review and meta-analysis. Pediatr Pulmonol 50:293–301

    Article  PubMed  Google Scholar 

  6. Harber MP, Kaminsky LA, Arena R, Blair SN, Franklin BA, Myers J, Ross R (2017) Impact of cardiorespiratory fitness on all-cause and disease-specific mortality: advances since 2009. Prog Cardiovasc Dis 60:11–20

    Article  PubMed  Google Scholar 

  7. Lovering AT, Elliott JE, Laurie SS, Beasley KM, Gust CE, Mangum TS, Gladstone IM, Duke JW (2014) Ventilatory and sensory responses in adult survivors of preterm birth and bronchopulmonary dysplasia with reduced exercise capacity. Ann Am Thorac Soc 11:1528–1537

    Article  PubMed  Google Scholar 

  8. Rogers M, Fay TB, Whitfield MF, Tomlinson J, Grunau RE (2005) Aerobic capacity, strength, flexibility, and activity level in unimpaired extremely low birth weight (<or=800 g) survivors at 17 years of age compared with term-born control subjects. Pediatrics 116:e58-65

    Article  PubMed  Google Scholar 

  9. Saigal S, Stoskopf B, Boyle M, Paneth N, Pinelli J, Streiner D, Goddeeris J (2007) Comparison of current health, functional limitations, and health care use of young adults who were born with extremely low birth weight and normal birth weight. Pediatrics 119:e562-573

    Article  PubMed  Google Scholar 

  10. Svedenkrans J, Henckel E, Kowalski J, Norman M, Bohlin K (2013) Long-term impact of preterm birth on exercise capacity in healthy young men: a national population-based cohort study. PLoS ONE 8:e80869

    Article  PubMed  PubMed Central  Google Scholar 

  11. Keller H, Bar-Or O, Kriemler S, Ayub BV, Saigal S (2000) Anaerobic performance in 5- to 7-yr-old children of low birthweight. Med Sci Sports Exerc 32:278–283

    Article  CAS  PubMed  Google Scholar 

  12. Hebestreit H, Bar-Or O (2001) Exercise and the child born prematurely. Sports Med 31:591–599

    Article  CAS  PubMed  Google Scholar 

  13. Wocadlo C, Rieger I (2008) Motor impairment and low achievement in very preterm children at eight years of age. Early Hum Dev 84:769–776

    Article  PubMed  Google Scholar 

  14. Huckstep OJ, Williamson W, Telles F, Burchert H, Bertagnolli M, Herdman C, Arnold L, Smillie R, Mohamed A, Boardman H, McCormick K, Neubauer S, Leeson P, Lewandowski AJ (2018) Physiological stress elicits impaired left ventricular function in preterm-born adults. J Am Coll Cardiol 71:1347–1356

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kaseva N, Wehkalampi K, Strang-Karlsson S, Salonen M, Pesonen AK, Räikkönen K, Tammelin T, Hovi P, Lahti J, Heinonen K, Järvenpää AL, Andersson S, Eriksson JG, Kajantie E (2012) Lower conditioning leisure-time physical activity in young adults born preterm at very low birth weight. PLoS ONE 7:e32430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tikanmäki M, Kaseva N, Tammelin T, Sipola-Leppänen M, Matinolli HM, Eriksson JG, Järvelin MR, Vääräsmäki M, Kajantie E (2017) Leisure time physical activity in young adults born preterm. J Pediatr 189:135-142.e132

    Article  PubMed  Google Scholar 

  17. Welsh L, Kirkby J, Lum S, Odendaal D, Marlow N, Derrick G, Stocks J (2010) The EPICure study: maximal exercise and physical activity in school children born extremely preterm. Thorax 65:165–172

    Article  PubMed  Google Scholar 

  18. Kaseva N, Martikainen S, Tammelin T, Hovi P, Järvenpää AL, Andersson S, Eriksson JG, Räikkönen K, Pesonen AK, Wehkalampi K, Kajantie E (2015) Objectively measured physical activity in young adults born preterm at very low birth weight. J Pediatr 166:474–476

    Article  PubMed  Google Scholar 

  19. Svien LR (2003) Health-related fitness of seven- to 10-year-old children with histories of preterm birth. Pediatr Phys Ther 15:74–83

    Article  PubMed  Google Scholar 

  20. Lowe J, Cousins M, Kotecha SJ, Kotecha S (2017) Physical activity outcomes following preterm birth. Paediatr Respir Rev 22:76–82

    PubMed  Google Scholar 

  21. Gries KJ, Raue U, Perkins RK, Lavin KM, Overstreet BS, D’Acquisto LJ, Graham B, Finch WH, Kaminsky LA, Trappe TA (1985) Trappe S (2018) Cardiovascular and skeletal muscle health with lifelong exercise. J Appl Physiol 125:1636–1645

    Article  Google Scholar 

  22. Draeger A, Weeds AG, Fitzsimons RB (1987) Primary, secondary and tertiary myotubes in developing skeletal muscle: a new approach to the analysis of human myogenesis. J Neurol Sci 81:19–43

    Article  CAS  PubMed  Google Scholar 

  23. Romero NB, Mezmezian M, Fidziańska A (2013) Main steps of skeletal muscle development in the human: morphological analysis and ultrastructural characteristics of developing human muscle. Handb Clin Neurol 113:1299–1310

    Article  PubMed  Google Scholar 

  24. Takekura H, Sun X, Franzini-Armstrong C. Development of the excitation-contraction coupling apparatus in skeletal muscle: peripheral and internal calcium release units are formed sequentially. J Muscle Res Cell Motil 1994;15:102–118.

  25. Silva W, Virtanen E, Kajantie E, Sebert S (2022) Cognitive function, mental health, and quality of life in siblings of preterm born children: protocol for a systematic review. JMIR Res Protoc 11:e34987

    Article  PubMed  PubMed Central  Google Scholar 

  26. Available from: https://casp-uk.net/casp-tools-checklists/.

  27. Available from: https://jbi.global/critical-appraisal-tools.

  28. Fricke O, Roedder D, Kribs A, Tutlewski B, von Kleist-Retzow JC, Herkenrath P, Roth B, Schoenau E (2010) Relationship of muscle function to auxology in preterm born children at the age of seven years. Horm Res Paediatr 73:390–397

    Article  CAS  PubMed  Google Scholar 

  29. Takken T, van Haastert I, Scholman WL, Block AJ, Eijsermans MJC, Vries L, Helders PJM (2010) Aerobic exercise capacity and its relationship with pulmonary function, muscle strength, physical activity and motor competence in preterm born children: the premafit-pilot study. Aerobic Exercise and Athletic Performance: Types, Duration and Health Benefits:293–306

  30. Tikanmäki M, Tammelin T, Sipola-Leppänen M, Kaseva N, Matinolli HM, Miettola S, Eriksson JG, Järvelin MR, Vääräsmäki M, Kajantie E (2016) Physical fitness in young adults born preterm. Pediatrics 137

  31. Morrison KM, Gunn E, Guay S, Obeid J, Schmidt LA, Saigal S (2021) Grip strength is lower in adults born with extremely low birth weight compared to term-born controls. Pediatr Res 89:996–1003

    Article  CAS  PubMed  Google Scholar 

  32. Small EW, Bar-or O, Ev M, Saigal S (1998) Muscle function of 11- to 17-year-old children of extremely low birthweight. Pediatr Exerc Sci 10:327–336

    Article  Google Scholar 

  33. Ahmad I, Nemet D, Eliakim A, Koeppel R, Grochow D, Coussens M, Gallitto S, Rich J, Pontello A, Leu SY, Cooper DM, Waffarn F (2010) Body composition and its components in preterm and term newborns: a cross-sectional, multimodal investigation. Am J Hum Biol 22:69–75

    Article  PubMed  PubMed Central  Google Scholar 

  34. Alonso-Ojembarrena A, Ruiz-González E, Estepa-Pedregosa L, Armenteros-López AI, Segado-Arenas A, Lubián-López SP (2020) Reproducibility and reference values of diaphragmatic shortening fraction for term and premature infants. Pediatr Pulmonol 55:1963–1968

    Article  PubMed  Google Scholar 

  35. Bertini G, Elia S, Dani C (2021) Using ultrasound to examine muscle mass in preterm infants at term-equivalent age. Eur J Pediatr 180:461–468

    Article  CAS  PubMed  Google Scholar 

  36. Burns YR, Danks M, O’Callaghan MJ, Gray PH, Cooper D, Poulsen L, Watter P (2009) Motor coordination difficulties and physical fitness of extremely-low-birthweight children. Dev Med Child Neurol 51:136–142

    Article  PubMed  Google Scholar 

  37. Dimitriou G, Greenoug A, Dyke H, Rafferty GF (2000) Maximal airway pressures during crying in healthy preterm and term neonates. Early Hum Dev 57:149–156

    Article  CAS  PubMed  Google Scholar 

  38. Dimitriou G, Greenough A, Moxham J, Rafferty GF (2003) Influence of maturation on infant diaphragm function assessed by magnetic stimulation of phrenic nerves. Pediatr Pulmonol 35:17–22

    Article  PubMed  Google Scholar 

  39. Engan M, Vollsæter M, Øymar K, Markestad T, Eide GE, Halvorsen T, Juliusson P, Clemm H (2019) Comparison of physical activity and body composition in a cohort of children born extremely preterm or with extremely low birth weight to matched term-born controls: a follow-up study. BMJ Paediatr Open 3:e000481

    Article  PubMed  PubMed Central  Google Scholar 

  40. FitzGerald TL, Cameron KL, Albesher RA, Mentiplay BF, Lee KJ, Clark RA, Cheong JLY, Doyle LW, McGinley JL, Spittle AJ (2021) Strength, motor skills, and physical activity in preschool-aged children born either at less than 30 weeks of gestation or at term. Phys Ther 101

  41. Georgieff MK, Mills MM, Zempel CE, Chang PN (1989) Catch-up growth, muscle and fat accretion, and body proportionality of infants one year after newborn intensive care. J Pediatr 114:288–292

    Article  CAS  PubMed  Google Scholar 

  42. Haikerwal A, Doyle LW, Patton G, Garland SM, Cheung MM, Wark JD, Cheong JLY (2021) Bone health in young adult survivors born extremely preterm or extremely low birthweight in the post surfactant era. Bone 143:115648

    Article  CAS  PubMed  Google Scholar 

  43. Haraldsdottir K, Watson AM, Pegelow DF, Palta M, Tetri LH, Levin T, Brix MD, Centanni RM, Goss KN, Eldridge MM (2020) Blunted cardiac output response to exercise in adolescents born preterm. Eur J Appl Physiol 120:2547–2554

    Article  PubMed  Google Scholar 

  44. Lori S, Bertini G, Gabbanini S, Bastianelli M, Cossu C, Lolli F, Dani C (2020) Neuromuscular maturation in the neonate: combined electroneurographic and ultrasonographic study. Early Hum Dev 141:104937

    Article  CAS  PubMed  Google Scholar 

  45. Martinez-Zamora MD, Valenzuela PL, Esteban Díez I, Martínez-de-Quel Ó (2023) Influence of preterm birth on physical fitness in early childhood. Eur J Sport Sci 23:2129–2138

    Article  PubMed  Google Scholar 

  46. Robič Pikel T, Starc G, Strel J, Kovač M, Babnik J, Golja P (2017) Impact of prematurity on exercise capacity and agility of children and youth aged 8 to 18. Early Hum Dev 110:39–45

    Article  PubMed  Google Scholar 

  47. Rideau Batista Novais A, Matecki S, Jaussent A, Picot MC, Amedro P, Guillaumont S, Picaud JC, Cambonie G (2012) Hyperventilation during exercise in very low birth weight school-age children may implicate inspiratory muscle weakness. J Pediatr 160:415-420.e411

    Article  PubMed  Google Scholar 

  48. Toledo AM, Tudella E (2008) The development of reaching behavior in low-risk preterm infants. Infant Behav Dev 31:398–407

    Article  CAS  PubMed  Google Scholar 

  49. Mata Zubillaga D, Rodríguez Fernández C, Rodríguez Fernández LM, de Paz Fernández JA, Arboleda Franco S, Alonso Patiño F (2015) Evaluation of isometric force in lower limbs and body composition in preterm infants. An Pediatr (Barc) 83:229–235

    Article  CAS  PubMed  Google Scholar 

  50. Demontis F, Piccirillo R, Goldberg AL, Perrimon N (2013) The influence of skeletal muscle on systemic aging and lifespan. Aging Cell 12:943–949

    Article  CAS  PubMed  Google Scholar 

  51. Sharples AP, Hughes DC, Deane CS, Saini A, Selman C, Stewart CE (2015) Longevity and skeletal muscle mass: the role of IGF signalling, the sirtuins, dietary restriction and protein intake. Aging Cell 14:511–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Morgan J, Partridge T (2020) Skeletal muscle in health and disease. Dis Model Mech 13

  53. Vinel C, Lukjanenko L, Batut A, Deleruyelle S, Pradère JP, Le Gonidec S, Dortignac A et al (2018) The exerkine apelin reverses age-associated sarcopenia. Nat Med 24:1360–1371

    Article  CAS  PubMed  Google Scholar 

  54. Lewandowski AJ, Augustine D, Lamata P, Davis EF, Lazdam M, Francis J, McCormick K, Wilkinson AR, Singhal A, Lucas A, Smith NP, Neubauer S, Leeson P (2013) Preterm heart in adult life: cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function. Circulation 127:197–206

    Article  PubMed  Google Scholar 

  55. Flahault A, Paquette K, Fernandes RO, Delfrate J, Cloutier A, Henderson M, Lavoie JC, Mâsse B, Nuyt AM, Luu TM (2020) Increased incidence but lack of association between cardiovascular risk factors in adults born preterm. Hypertension 75:796–805

    Article  CAS  PubMed  Google Scholar 

  56. Hovi P, Kajantie E, Soininen P, Kangas AJ, Järvenpää AL, Andersson S, Eriksson JG, Ala-Korpela M, Wehkalampi K (2013) Lipoprotein subclass profiles in young adults born preterm at very low birth weight. Lipids Health Dis 12:57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Croix Mde S (2007) Advances in paediatric strength assessment: changing our perspective on strength development. J Sports Sci Med 6:292–304

    PubMed  Google Scholar 

  58. Martin LG, Grossman MS, Connor TB, Levitsky LL, Clark JW, Camitta FD (1997) Effect of androgen on growth hormone secretion and growth in boys with short stature. Acta Endocrinol 91:201–212

    Google Scholar 

  59. Pirilä S, Saarinen-Pihkala UM, Viljakainen H, Turanlahti M, Kajosaari M, Mäkitie O, Taskinen M (2012) Breastfeeding and determinants of adult body composition: a prospective study from birth to young adulthood. Horm Res Paediatr 77:281–290

    Article  PubMed  Google Scholar 

  60. Vrijlandt EJ, Gerritsen J, Boezen HM, Grevink RG, Duiverman EJ (2006) Lung function and exercise capacity in young adults born prematurely. Am J Respir Crit Care Med 173:890–896

    Article  PubMed  Google Scholar 

  61. Weiss EP, Jordan RC, Frese EM, Albert SG, Villareal DT (2017) Effects of weight loss on lean mass, strength, bone, and aerobic capacity. Med Sci Sports Exerc 49:206–217

    Article  PubMed  PubMed Central  Google Scholar 

  62. Polla B, D’Antona G, Bottinelli R, Reggiani C (2004) Respiratory muscle fibres: specialisation and plasticity. Thorax 59:808–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gosselink R, Troosters T, Decramer M (1996) Peripheral muscle weakness contributes to exercise limitation in COPD. Am J Respir Crit Care Med 153:976–980

    Article  CAS  PubMed  Google Scholar 

  64. Brunjes DL, Kennel PJ, Christian Schulze P (2017) Exercise capacity, physical activity, and morbidity. Heart Fail Rev 22:133–139

    Article  PubMed  PubMed Central  Google Scholar 

  65. Leong DP, Teo KK, Rangarajan S, Lopez-Jaramillo P, Avezum A Jr, Orlandini A, Seron P, Ahmed SH, Rosengren A, Kelishadi R, Rahman O, Swaminathan S, Iqbal R, Gupta R, Lear SA, Oguz A, Yusoff K, Zatonska K, Chifamba J, Igumbor E, Mohan V, Anjana RM, Gu H, Li W, Yusuf S (2015) Prognostic value of grip strength: findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet 386:266–273

    Article  PubMed  Google Scholar 

  66. Cooper R, Kuh D, Hardy R (2010) Objectively measured physical capability levels and mortality: systematic review and meta-analysis. BMJ 341:c4467

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cannavò L, Perrone S, Viola V, Marseglia L, Di Rosa G, Gitto E (2021) Oxidative stress and respiratory diseases in preterm newborns. Int J Mol Sci 22

  68. Torres-Cuevas I, Parra-Llorca A, Sánchez-Illana A, Nuñez-Ramiro A, Kuligowski J, Cháfer-Pericás C, Cernada M, Escobar J, Vento M (2017) Oxygen and oxidative stress in the perinatal period. Redox Biol 12:674–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Humberg A, Fortmann I, Siller B, Kopp MV, Herting E, Göpel W, Härtel C (2020) Preterm birth and sustained inflammation: consequences for the neonate. Semin Immunopathol 42:451–468

    Article  PubMed  PubMed Central  Google Scholar 

  70. Tetri LH, Diffee GM, Barton GP, Braun RK, Yoder HE, Haraldsdottir K, Eldridge MW, Goss KN (2018) Sex-specific skeletal muscle fatigability and decreased mitochondrial oxidative capacity in adult rats exposed to postnatal hyperoxia. Front Physiol 9:326

    Article  PubMed  PubMed Central  Google Scholar 

  71. Deprez A, Orfi Z, Radu A, He Y, Ravizzoni Dartora D, Dort J, Dumont NA, Nuyt AM (2021) Transient neonatal exposure to hyperoxia, an experimental model of preterm birth, leads to skeletal muscle atrophy and fiber type switching. Clin Sci (Lond) 135:2589–2605

    CAS  PubMed  Google Scholar 

  72. Remels AH, Gosker HR, Langen RC (1985) Schols AM (2013) The mechanisms of cachexia underlying muscle dysfunction in COPD. J Appl Physiol 114:1253–1262

    Article  Google Scholar 

  73. Antuña E, Cachán-Vega C, Bermejo-Millo JC, Potes Y, Caballero B, Vega-Naredo I, Coto-Montes A, Garcia-Gonzalez C (2022) Inflammaging: implications in sarcopenia. Int J Mol Sci 23

  74. Parets SE, Bedient CE, Menon R, Smith AK (2014) Preterm birth and its long-term effects: methylation to mechanisms. Biology (Basel) 3:498–513

    CAS  PubMed  Google Scholar 

  75. Wang Z, Lyu G, Zhong H, Yan L, Xu Z (2023) Shear wave elastography for detecting calf muscle stiffness: an effective tool for assessing sarcopenia. J Ultrasound Med 42:891–900

    Article  PubMed  Google Scholar 

  76. Benz E, Trajanoska K, Lahousse L, Schoufour JD, Terzikhan N, De Roos E, de Jonge GB, Williams R, Franco OH, Brusselle G, Rivadeneira F (2019) Sarcopenia in COPD: a systematic review and meta-analysis. Eur Respir Rev 28

  77. Zhang Y, Zhang J, Ni W, Yuan X, Zhang H, Li P, Xu J, Zhao Z (2021) Sarcopenia in heart failure: a systematic review and meta-analysis. ESC Heart Fail 8:1007–1017

    Article  PubMed  PubMed Central  Google Scholar 

  78. Pamoukdjian F, Bouillet T, Lévy V, Soussan M, Zelek L, Paillaud E (2018) Prevalence and predictive value of pre-therapeutic sarcopenia in cancer patients: a systematic review. Clin Nutr 37:1101–1113

    Article  PubMed  Google Scholar 

  79. Beaudart C, Biver E, Bruyère O, Cooper C, Al-Daghri N, Reginster JY, Rizzoli R (2018) Quality of life assessment in musculo-skeletal health. Aging Clin Exp Res 30:413–418

    Article  PubMed  Google Scholar 

  80. Liguori I, Russo G, Aran L, Bulli G, Curcio F, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P (2018) Sarcopenia: assessment of disease burden and strategies to improve outcomes. Clin Interv Aging 13:913–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Westcott WL (2012) Resistance training is medicine: effects of strength training on health. Curr Sports Med Rep 11:209–216

    Article  PubMed  Google Scholar 

  82. Garatachea N, Pareja-Galeano H, Sanchis-Gomar F, Santos-Lozano A, Fiuza-Luces C, Morán M, Emanuele E, Joyner MJ, Lucia A (2015) Exercise attenuates the major hallmarks of aging. Rejuvenation Res 18:57–89

    Article  PubMed  PubMed Central  Google Scholar 

  83. Orsso CE, Montes-Ibarra M, Findlay M, van der Meij BS, de van der Schueren MAE, Landi F, Laviano A, Prado CM (2022) Mapping ongoing nutrition intervention trials in muscle, sarcopenia, and cachexia: a scoping review of future research. J Cachexia Sarcopenia Muscle 13:1442–1459

    Article  PubMed  PubMed Central  Google Scholar 

  84. Nuyt AM, Lavoie JC, Mohamed I, Paquette K, Luu TM (2017) Adult consequences of extremely preterm birth: cardiovascular and metabolic diseases risk factors, mechanisms, and prevention avenues. Clin Perinatol 44:315–332

    Article  PubMed  Google Scholar 

  85. Roussel MP, Hébert LJ, Duchesne E (2020) Strength-training effectively alleviates skeletal muscle impairments in myotonic dystrophy type 1. Neuromuscul Disord 30:283–293

    Article  PubMed  Google Scholar 

  86. Li P, Li J, Wang Y, Xia J, Liu X (2021) Effects of exercise intervention on peripheral skeletal muscle in stable patients with COPD: a systematic review and meta-analysis. Front Med (Lausanne) 8:766841

    Article  PubMed  Google Scholar 

  87. Salihu HM, Salinas-Miranda AA, Hill L, Chandler K (2013) Survival of pre-viable preterm infants in the United States: a systematic review and meta-analysis. Semin Perinatol 37:389–400

    Article  PubMed  Google Scholar 

  88. Raju TNK, Buist AS, Blaisdell CJ, Moxey-Mims M, Saigal S (2017) Adults born preterm: a review of general health and system-specific outcomes. Acta Paediatr 106:1409–1437

    Article  PubMed  Google Scholar 

  89. Domellöf M (2017) Meeting the iron needs of low and very low birth weight infants. Ann Nutr Metab 71(Suppl 3):16–23

    Article  PubMed  Google Scholar 

  90. Mihatsch W, Thome U, Saenz de Pipaon M (2021) Update on calcium and phosphorus requirements of preterm infants and recommendations for enteral mineral intake. Nutrients 13

  91. Rossholt ME, Wendel K, Bratlie M, Aas MF, Gunnarsdottir G, Fugelseth D, Pripp AH, Domellöf M, Størdal K, Stiris T, Moltu SJ (2023) Vitamin A status in preterm infants is associated with inflammation and dexamethasone exposure. Nutrients 15

  92. Chawanpaiboon S, Vogel JP, Moller AB, Lumbiganon P, Petzold M, Hogan D, Landoulsi S, Jampathong N, Kongwattanakul K, Laopaiboon M, Lewis C, Rattanakanokchai S, Teng DN, Thinkhamrop J, Watananirun K, Zhang J, Zhou W, Gülmezoglu AM (2019) Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. Lancet Glob Health 7:e37–e46

    Article  PubMed  Google Scholar 

  93. Duke JW, Lovering AT, Goss KN (2020) Premature aging and increased risk of adult cardiorespiratory disease after extreme preterm birth. Getting to the heart (and lungs) of the matter. Am J Respir Crit Care Med 202:319–320

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mi-Suk Kang Dufour for her assistance with the statistical analysis.

Funding

AD was supported by fellowships of the FRQNT (Fonds de recherche du Québec—Nature et Technologies, 275929). JHPB was awarded a fellowship from the CIHR (Canadian Institutes of Health Research MFE-181801). AMN was supported by the Cercle de Sainte-Justine DOHaD Research Chair and a Tier 1 Canada Research Chair in Prematurity and Developmental Origins of Cardiovascular Health and Diseases. TML was supported by a CIHR (PJT-173404) and FRQS (Fonds de Recherche du Québec—Santé) senior award. NAD was supported by a FRQS Junior-2 award, and by a research grant from the CIHR (PJT-174993).

Author information

Authors and Affiliations

Authors

Contributions

AD and JHPB, conceptualized and designed the study, collected data, carried out the initial analyses, drafted the initial manuscript and revised the manuscript. AD, JHPB, and PD designed the data collection instruments. DRD and AMN, critically reviewed and revised the manuscript. TML and NAD conceptualized and designed the study, coordinated the project, supervised data collection, and critically reviewed and revised the manuscript. AD and JHPB contributed equally.

Corresponding author

Correspondence to Nicolas A. Dumont.

Ethics declarations

Ethics approval

An ethics statement is not applicable because this study is based exclusively on published literature.

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Gregorio Milani

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Alyson Deprez and Jéssica H. Poletto Bonetto contributed equally.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 821 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deprez, A., Poletto Bonetto, J.H., Ravizzoni Dartora, D. et al. Impact of preterm birth on muscle mass and function: a systematic review and meta-analysis. Eur J Pediatr 183, 1989–2002 (2024). https://doi.org/10.1007/s00431-023-05410-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-023-05410-5

Keywords

Navigation