Skip to main content

Advertisement

Log in

Cardiac arrest and cardiopulmonary resuscitation in pediatric patients with cardiac disease: a narrative review

  • REVIEW
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Children with cardiac disease are at a higher risk of cardiac arrest as compared to healthy children. Delivering adequate cardiopulmonary resuscitation (CPR) can be challenging due to anatomic characteristics, risk profiles, and physiologies. We aimed to review the physiological aspects of resuscitation in different cardiac physiologies, summarize the current recommendations, provide un update of current literature, and highlight knowledge gaps to guide research efforts. We specifically reviewed current knowledge on resuscitation strategies for high-risk categories of patients including patients with single-ventricle physiology, right-sided lesions, right ventricle restrictive physiology, left-sided lesions, myocarditis, cardiomyopathy, pulmonary arterial hypertension, and arrhythmias. Cardiac arrest occurs in about 1% of hospitalized children with cardiac disease, and in 5% of those admitted to an intensive care unit. Mortality after cardiac arrest in this population remains high, ranging from 30 to 65%. The neurologic outcome varies widely among studies, with a favorable neurologic outcome at discharge observed in 64%-95% of the survivors. Risk factors for cardiac arrest and associated mortality include younger age, lower weight, prematurity, genetic syndrome, single-ventricle physiology, arrhythmias, pulmonary arterial hypertension, comorbidities, mechanical ventilation preceding cardiac arrest, surgical complexity, higher vasoactive-inotropic score, and factors related to resources and institutional characteristics. Recent data suggest that Extracorporeal membrane oxygenation CPR (ECPR) may be a valid strategy in centers with expertise. Overall, knowledge on resuscitation strategies based on physiology remains limited, with a crucial need for further research in this field. Collaborative and interprofessional studies are highly needed to improve care and outcomes for this high-risk population.

What is Known:

Children with cardiac disease are at high risk of cardiac arrest, and cardiopulmonary resuscitation may be challenging due to unique characteristics and different physiologies.

Mortality after cardiac arrest remains high and neurologic outcomes suboptimal.

What is New:

We reviewed the unique resuscitation challenges, current knowledge, and recommendations for different cardiac physiologies.

We highlighted knowledge gaps to guide research efforts aimed to improve care and outcomes in this high-risk population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CHD:

Congenital heart disease

CI:

Confidence interval

CPR:

Cardiopulmonary resuscitation

ECMO:

Extracorporeal membrane oxygenation

ECPR:

Extracorporeal cardiopulmonary resuscitation

ICU:

Intensive care unit

LV:

Left ventricle

OR:

Odds ratio

Qp:

Pulmonary flow

Qs:

Systemic flow

ROSC:

Return to spontaneous circulation

RV:

Right ventricle

SV:

Single ventricle

References

  1. Lowry AW, Knudson JD, Cabrera AG et al (2013) Cardiopulmonary resuscitation in hospitalized children with cardiovascular disease: Estimated prevalence and outcomes from the Kids’ Inpatient database. Pediatr Crit Care Med 14:248–255. https://doi.org/10.1097/PCC.0b013e3182713329

    Article  PubMed  Google Scholar 

  2. Marino BS, Tabbutt S, MacLaren G et al (2018) Cardiopulmonary Resuscitation in Infants and Children With Cardiac Disease. Circulation 137:691–782. https://doi.org/10.1161/CIR.0000000000000524

    Article  Google Scholar 

  3. Kleinman ME, Chameides L, Schexnayder SM et al (2010) Part 14: Pediatric advanced life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 122:876–908. https://doi.org/10.1161/CIRCULATIONAHA.110.971101

    Article  Google Scholar 

  4. De Caen AR, Berg MD, Chameides L et al (2015) PALS pediatric resuscitation AHA 2015. Circulation 132:526–543. https://doi.org/10.1161/CIR.0000000000000266

    Article  Google Scholar 

  5. Sperotto F, Daverio M, Amigoni A et al (2023) Trends in in-hospital cardiac arrest and mortality among critically ill children with cardiac disease: a systematic review and meta-analysis. JAMA Netw Open 6(2):e2256178. https://doi.org/10.1001/jamanetworkopen.2022.56178

  6. Gupta P, Tang X, Gall CM et al (2014) Epidemiology and outcomes of in-hospital cardiac arrest in critically ill children across hospitals of varied center volume: A multi-center analysis. Resuscitation 85:1473–1479. https://doi.org/10.1016/j.resuscitation.2014.07.016

    Article  PubMed  Google Scholar 

  7. Alten JA, Klugman D, Raymond TT et al (2017) Epidemiology and outcomes of cardiac arrest in pediatric cardiac ICUs. Pediatr Crit Care Med 18:935–943. https://doi.org/10.1097/PCC.0000000000001273

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gupta P, Rettiganti M, Jeffries HE et al (2016) Risk factors and outcomes of in-hospital cardiac arrest following pediatric heart operations of varying complexity. Resuscitation 105:1–7. https://doi.org/10.1016/j.resuscitation.2016.04.022

    Article  PubMed  Google Scholar 

  9. Gupta P, Jacobs JP, Pasquali SK et al (2014) Epidemiology and Outcomes After In-Hospital Cardiac Arrest After Pediatric Cardiac Surgery. Ann Thorac Surg 98:2138–2144. https://doi.org/10.1016/j.athoracsur.2014.06.103

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hansen G, Joffe AR, Nettel-Aguirre A et al (2011) Two-year survival and neurodevelopmental outcomes after cardiopulmonary resuscitation in neonatal patients after complex cardiac surgery. Resuscitation 82:313–318. https://doi.org/10.1016/j.resuscitation.2010.10.017

    Article  PubMed  Google Scholar 

  11. Suominen P, Palo R, Sairanen H et al (2001) Perioperative determinants and outcome of cardiopulmonary arrest in children after heart surgery. Eur J Cardio-thoracic Surg 19:127–134. https://doi.org/10.1016/S1010-7940(00)00650-3

    Article  CAS  Google Scholar 

  12. Odegard KC, Bergersen L, Thiagarajan R et al (2014) The frequency of cardiac arrests in patients with congenital heart disease undergoing cardiac catheterization. Anesth Analg 118:175–182. https://doi.org/10.1213/ANE.0b013e3182908bcb

    Article  PubMed  Google Scholar 

  13. Odegard KC, DiNardo JA, Kussman BD et al (2007) The frequency of anesthesia-related cardiac arrests in patients with congenital heart disease undergoing cardiac surgery. Anesth Analg 105:335–343. https://doi.org/10.1213/01.ane.0000268498.68620.39

    Article  PubMed  Google Scholar 

  14. Migliavacca F, Pennati G, Dubini G et al (2001) Modeling of the Norwood circulation: effects of shunt size, vascular resistances, and heart rate. Am J Physiol Circ Physiol 280:H2076–H2086. https://doi.org/10.1152/ajpheart.2001.280.5.H2076

    Article  CAS  Google Scholar 

  15. Ohye RG, Sleeper LA, Mahony L et al (2010) Comparison of Shunt Types in the Norwood Procedure for Single-Ventricle Lesions. N Engl J Med 362:1980–1992. https://doi.org/10.1056/nejmoa0912461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tweddell JS, Hoffman GM, Fedderly RT et al (2000) Patients at risk for low systemic oxygen after the Norwood procedure. Ann Thorac Surg 69:1893–1899. https://doi.org/10.1016/S0003-4975(00)01349-7

    Article  CAS  PubMed  Google Scholar 

  17. Tabbutt S, Dominguez TE, Ravishankar C et al (2005) Outcomes after the stage I reconstruction comparing the right ventricular to pulmonary artery conduit with the modified Blalock Taussig shunt. Ann Thorac Surg 80:1582–1591. https://doi.org/10.1016/j.athoracsur.2005.04.046

    Article  PubMed  Google Scholar 

  18. Feinstein JA, Benson DW, Dubin AM et al (2012) Hypoplastic left heart syndrome: Current considerations and expectations. J Am Coll Cardiol 59. https://doi.org/10.1016/j.jacc.2011.09.022

  19. Mills KI, Kaza AK, Walsh BK et al (2016) Phosphodiesterase inhibitor-based vasodilation improves oxygen delivery and clinical outcomes following stage 1 palliation. J Am Heart Assoc 5:1–13. https://doi.org/10.1161/JAHA.116.003554

    Article  Google Scholar 

  20. Hoskote A, Li J, Hickey C et al (2004) The effects of carbon dioxide on oxygenation and systemic, cerebral, and pulmonary vascular hemodynamics after the bidirectional superior cavopulmonary anastomosis. J Am Coll Cardiol 44:1501–1509. https://doi.org/10.1016/j.jacc.2004.06.061

    Article  PubMed  Google Scholar 

  21. Shekerdemian LS, Bush A, Shore DF et al (1997) Cardiopulmonary Interactions After Fontan Operations. Circulation 96:3934–3942. https://doi.org/10.1161/01.cir.96.11.3934

    Article  CAS  PubMed  Google Scholar 

  22. Bradley SM, Simsic JM, Mulvihill DM (2003) Hypoventilation improves oxygenation after bidirectional superior cavopulmonary connection. J Thorac Cardiovasc Surg 126:1033–1039. https://doi.org/10.1016/S0022-5223(03)00203-4

    Article  PubMed  Google Scholar 

  23. Shekerdemian LS, Bush A, Shore DF et al (1997) Cardiopulmonary interactions after Fontan operations: augmentation of cardiac output using negative pressure ventilation. Circulation 2:3934–3942. https://doi.org/10.1161/01.cir.96.11.3934

    Article  Google Scholar 

  24. Topjian AA, Raymond TT, Atkins D et al (2020) Part 4: Pediatric Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care

  25. Chaturvedi RR, Shore DF, Lincoln C et al (1999) Acute Right Ventricular Restrictive Physiology After Repair of Tetralogy of Fallot: Association With Myocardial Injury and Oxidative Stress. Circulation 100:1540–1547

    Article  CAS  PubMed  Google Scholar 

  26. Apitz C, Latus H, Binder W et al (2010) Impact of restrictive physiology on intrinsic diastolic right ventricular function and lusitropy in children and adolescents after repair of tetralogy of Fallot. Heart 96:1837–1841. https://doi.org/10.1136/hrt.2010.203190

    Article  PubMed  Google Scholar 

  27. Santamore WP, Dell’Italia LJ (1998) Ventricular interdependence: Significant left ventricular contributions to right ventricular systolic function. Prog Cardiovasc Dis 40:289–308. https://doi.org/10.1016/S0033-0620(98)80049-2

    Article  CAS  PubMed  Google Scholar 

  28. Seghaye MC, Grabitz RG, Duchateau J et al (1996) Inflammatory reaction and capillary leak syndrome related to cardiopulmonary bypass in neonates undergoing cardiac operations. J Thorac Cardiovasc Surg 112:687–697. https://doi.org/10.1016/S0022-5223(96)70053-3

    Article  CAS  PubMed  Google Scholar 

  29. Penny DJ, Hayek Z, Redington AN (1991) The effects of positive and negative extrathoracic pressure ventilation on pulmonary blood flow after the total cavopulmonary shunt procedure. Int J Cardiol 30:128–130. https://doi.org/10.1016/0167-5273(91)90137-E

    Article  CAS  PubMed  Google Scholar 

  30. Cullen S, And DS, Redington A (1995) Characterization of Right Ventricular Diastolic Performance After Complete Repair of Tetralogy of Fallot Restrictive Physiology Predicts Slow Postoperative Recovery 1782–1789. https://doi.org/10.1161/01.CIR.91.6.1782

  31. Gillespie MJ, Marino BS, Cohen MS et al (2006) Risk factors for adverse outcomes after surgery on the systemic atriventricular valve in 109 children. Cardiol Young 16:35–42. https://doi.org/10.1017/S1047951106000746

    Article  PubMed  Google Scholar 

  32. Carabello BA (2008) The Current Therapy for Mitral Regurgitation. J Am Coll Cardiol 52:319–326. https://doi.org/10.1016/j.jacc.2008.02.084

    Article  PubMed  Google Scholar 

  33. Alsoufi B, Karamlou T, Mccrindle BW, Caldarone CA (2007) Management options in neonates and infants with critical left ventricular outflow tract obstruction 31:1013–1021. https://doi.org/10.1016/j.ejcts.2007.03.015

    Article  Google Scholar 

  34. Hickey EJ, Caldarone CA, Blackstone EH et al (2012) Biventricular strategies for neonatal critical aortic stenosis: High mortality associated with early reintervention. J Thorac Cardiovasc Surg 144:409-417.e1. https://doi.org/10.1016/j.jtcvs.2011.09.076

    Article  PubMed  Google Scholar 

  35. Petit CJ, Ing FF, Mattamal R et al (2012) Original Studies Diminished Left Ventricular Function Is Associated With Poor Mid-Term Outcomes in Neonates After Balloon Aortic Valvuloplasty 000. https://doi.org/10.1002/ccd.23500

  36. Law Y, Lal A, Chen S et al (2021) Diagnosis and Management of Myocarditis in Children: A scientific statement from the American Heart Association 144:e123–e135. https://doi.org/10.1161/CIR.0000000000001001

    Article  CAS  Google Scholar 

  37. Lipshultz S, Law Y, Asante-Korang A et al (2019) Cardiomyopathy in Children : Classification and Diagnosis. A Scientific Statement From the American Heart Association 140:9–68. https://doi.org/10.1161/CIR.0000000000000682

    Article  Google Scholar 

  38. Teele SA, Allan CK, Laussen PC et al (2011) Management and outcomes in pediatric patients presenting with acute fulminant myocarditis. J Pediatr 158:638-643.e1. https://doi.org/10.1016/j.jpeds.2010.10.015

    Article  PubMed  Google Scholar 

  39. Bando K, Turrentine MW, Sharp TG et al (1996) Pulmonary hypertension after operations for congenital heart disease: analysis of risk factors and management. J Thorac Cardiovasc Surg 112:1660–1609

    Article  Google Scholar 

  40. Lindberg L, Olsson A, Jögi P, Jonmarker C (2002) How common is severe pulmonary hypertension after pediatric cardiac surgery? J Tho 123:1155–1163. https://doi.org/10.1067/mtc.2002.121497

    Article  CAS  Google Scholar 

  41. Brown KL, Ridout DA, Goldman AP et al (2003) Risk factors for long intensive care unit stay after cardiopulmonary bypass in children. Crit Care Med 31:28–33. https://doi.org/10.1097/00003246-200301000-00004

    Article  PubMed  Google Scholar 

  42. Cheng JW, Tonelli A, Pettersson G, Krasuski R (2014) Pharmacologic Management of Perioperative Pulmonary Hypertension. J Cardiovasc Pharmacol 63:375–384. https://doi.org/10.1097/FJC.0000000000000050.Pharmacologic

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sandoval J, Gaspar J, Bautista E et al (1998) Graded Balloon Dilation Atrial Septostomy in Severe Primary Pulmonary Hypertension A Therapeutic Alternative for Patients Nonresponsive to Vasodilator Treatment. Interv Cardiol 32:297–304. https://doi.org/10.1016/S0735-1097(98)00238-1

    Article  CAS  Google Scholar 

  44. Weindling SN, Saul JP, Gamble WJ et al (1998) Duration of complete atrioventricular block after congenital heart disease surgery. Am J Cardiol 82:525–527. https://doi.org/10.1016/S0002-9149(98)00375-0

    Article  CAS  PubMed  Google Scholar 

  45. Richardson C, Silver ES (2017) Management of Supraventricular Tachycardia in Infants. Pediatr Drugs 19:539–551. https://doi.org/10.1007/s40272-017-0254-0

    Article  Google Scholar 

  46. Perry JC, Fenrich AL, Hulse JE et al (1996) Pediatric use of intravenous amiodarone: Efficacy and safety in critically ill patients from a multicenter protocol. J Am Coll Cardiol 27:1246–1250. https://doi.org/10.1016/0735-1097(95)00591-9

    Article  CAS  PubMed  Google Scholar 

  47. Hoffman TM, Bush DM, Wernovsky G et al (2002) Postoperative Junctional Ectopic Tachycardia in Children : Incidence, Risk Factors, and Treatment. Ann Thorac Surg 4975:1607–1611

    Article  Google Scholar 

  48. Batra AS, Chun DS, Johnson TR et al (2006) A Prospective Analysis of the Incidence and Risk Factors Associated with Junctional Ectopic Tachycardia Following Surgery for Congenital Heart Disease. Pediatr Cardiol 27:51–55. https://doi.org/10.1007/s00246-005-0992-6

    Article  CAS  PubMed  Google Scholar 

  49. Zampi JD, Hirsch JC (2012) Gurney JG (2012) Junctional Ectopic Tachycardia After Infant Heart Surgery : Incidence and Outcomes. Pediatr Cardiol 33:1362–1369. https://doi.org/10.1007/s00246-012-0348-y

    Article  PubMed  Google Scholar 

  50. Walsh EP, Saul JP, Sholler GF et al (1997) Evaluation of a Staged Treatment Protocol for Rapid Automatic Junctional Tachycardia After Operation for Congenital Heart Disease. J Am Coll Cardiol 29:1046–1053. https://doi.org/10.1016/S0735-1097(97)00040-5

    Article  CAS  PubMed  Google Scholar 

  51. Valdes SO, Donoghue AJ, Hoyme DB et al (2014) Outcomes associated with amiodarone and lidocaine in the treatment of in-hospital pediatric cardiac arrest with pulseless ventricular tachycardia or ventricular fibrillation. Resuscitation 85:381–386. https://doi.org/10.1016/j.resuscitation.2013.12.008

    Article  CAS  PubMed  Google Scholar 

  52. Barbaro RP, Paden ML, Guner YS et al (2017) Pediatric Extracorporeal Life Support Organization Registry International Report 2016. ASAIO J 63:456–463. https://doi.org/10.1097/MAT.0000000000000603

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rao P, Khalpey Z, Smith R et al (2018) Venoarterial Extracorporeal Membrane Oxygenation for Cardiogenic Shock and Cardiac Arrest. Circ Heart Fail 11:e004905. https://doi.org/10.1161/CIRCHEARTFAILURE.118.004905

  54. Bhaskar P, Davila S, Hoskote A, Thiagarajan R (2021) Use of ECMO for Cardiogenic Shock in Pediatric Population. J Clin Med 10:1573. https://doi.org/10.3390/jcm10081573

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lasa JJ, Rogers RS, Localio R et al (2016) Extracorporeal Cardiopulmonary Resuscitation (E-CPR) during Pediatric In-Hospital Cardiopulmonary Arrest Is Associated with Improved Survival to Discharge. Circulation 133:165–176. https://doi.org/10.1161/CIRCULATIONAHA.115.016082

    Article  PubMed  Google Scholar 

  56. Berg RA, Nadkarni VM, Clark AE et al (2016) Incidence and Outcomes of Cardiopulmonary Resuscitation in PICUs. Crit Care Med 44:798–808. https://doi.org/10.1097/CCM.0000000000001484

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yates AR, Sutton RM, Reeder RW et al (2019) Survival and Cardiopulmonary Resuscitation Hemodynamics Following Cardiac Arrest in Children with Surgical Compared to Medical Heart Disease. Pediatr Crit Care Med 20:1126–1136. https://doi.org/10.1097/PCC.0000000000002088

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dagan M, Butt W, Millar J et al (2019) Changing Risk of In-Hospital Cardiac Arrest in Children Following Cardiac Surgery in Victoria, Australia, 2007–2016. Hear Lung Circ 28:1904–1912. https://doi.org/10.1016/j.hlc.2018.11.003

    Article  Google Scholar 

  59. Dhillon GS, Lasa JJ, Aggarwal V et al (2019) Cardiac Arrest in the Pediatric Cardiac ICU: Is Medical Congenital Heart Disease a Predictor of Survival?∗. Pediatr Crit Care Med 20:233–242. https://doi.org/10.1097/PCC.0000000000001810

    Article  PubMed  Google Scholar 

  60. Gupta P, Pasquali SK, Jacobs JP et al (2016) Outcomes following single and recurrent in-hospital cardiac arrests in children with heart disease: a report from American Heart Association’s get with the guidelines registry-resuscitation. Pediatr Crit Care Med 17:531–539. https://doi.org/10.1097/PCC.0000000000000678

    Article  PubMed  Google Scholar 

  61. Gaies MG, Clarke NS, Donohue JE et al (2012) Personnel and unit factors impacting outcome after cardiac arrest in a dedicated pediatric cardiac intensive care unit. Pediatr Crit Care Med 13:583–588. https://doi.org/10.1097/PCC.0b013e318238b272

    Article  PubMed  Google Scholar 

  62. Parra DA, Totapally BR, Zahn E et al (2000) Outcome of cardiopulmonary resuscitation in a pediatric cardiac intensive care unit. Crit Care Med 28:3296–3300. https://doi.org/10.1097/00003246-200009000-00030

    Article  CAS  PubMed  Google Scholar 

  63. Rhodes JF, Blaufox AD, Seiden HS et al (1999) Cardiac arrest in infants after congenital heart surgery. Circulation 100

  64. Kane DA, Thiagarajan RR, Wypij D et al (2010) Rapid-response extracorporeal membrane oxygenation to support cardiopulmonary resuscitation in children with cardiac disease. Circulation 122. https://doi.org/10.1161/CIRCULATIONAHA.109.928390

  65. Thiagarajan RR, Laussen PC, Rycus PT et al (2007) Extracorporeal membrane oxygenation to aid cardiopulmonary resuscitation in infants and children. Circulation 116:1693–1700. https://doi.org/10.1161/CIRCULATIONAHA.106.680678

    Article  PubMed  Google Scholar 

  66. Brunetti MA, Gaynor JW, Retzloff LB et al (2018) Characteristics, Risk Factors, and Outcomes of Extracorporeal Membrane Oxygenation Use in Pediatric Cardiac ICUs: A Report from the Pediatric Cardiac Critical Care Consortium Registry. Pediatr Crit Care Med 19:544–552. https://doi.org/10.1097/PCC.0000000000001571

    Article  PubMed  PubMed Central  Google Scholar 

  67. Raymond TT, Cunnyngham CB, Thompson MT et al (2010) Outcomes among neonates, infants, and children after extracorporeal cardiopulmonary resuscitation for refractory inhospital pediatric cardiac arrest: A report from the National Registry of Cardiopulmonary Resuscitation. Pediatr Crit Care Med 11:362–371. https://doi.org/10.1097/PCC.0b013e3181c0141b

    Article  PubMed  Google Scholar 

  68. Wolf MJ, Kanter KR, Kirshbom PM et al (2012) Extracorporeal cardiopulmonary resuscitation for pediatric cardiac patients. Ann Thorac Surg 94:874–880. https://doi.org/10.1016/j.athoracsur.2012.04.040

    Article  PubMed  Google Scholar 

  69. Kotani Y, Chetan D, Rodrigues W et al (2013) Left Atrial Decompression During Venoarterial Extracorporeal Membrane Oxygenation for Left Ventricular Failure in Children: Current Strategy and Clinical Outcomes. Artif Organs 37:29–36. https://doi.org/10.1111/j.1525-1594.2012.01534.x

    Article  PubMed  Google Scholar 

  70. Gupta P, Yan K, Chow V et al (2014) Variability of characteristics and outcomes following cardiopulmonary resuscitation events in diverse icu settings in a single, tertiary care children’s hospital. Pediatr Crit Care Med 15. https://doi.org/10.1097/PCC.0000000000000067

  71. Ortmann L, Prodhan P, Gossett J et al (2011) Outcomes after in-hospital cardiac arrest in children with cardiac disease: A report from get with the guidelines-resuscitation. Circulation 124:2329–2337. https://doi.org/10.1161/CIRCULATIONAHA.110.013466

    Article  PubMed  Google Scholar 

  72. Ramamoorthy C, Haberkern CM, Bhananker SM et al (2010) Anesthesia-related cardiac arrest in children with heart disease: Data from the pediatric perioperative cardiac arrest (POCA) registry. Anesth Analg 110:1376–1382. https://doi.org/10.1213/ANE.0b013e3181c9f927

    Article  CAS  PubMed  Google Scholar 

  73. Ahmadi AR, Aarabi MY, Cardiovascular I, Cardiovascular R (2013) Postoperative cardiac arrest in children with congenital heart abnormalities. ARYA Atheroscler 9:145–149

    PubMed  PubMed Central  Google Scholar 

  74. Fiser DH, Tilford JM, Roberson PK (2000) Relationship of illness severity and length of stay to functional outcomes in the pediatric intensive care unit : A multi-institutional study. Crit Care Med 28:1173–1179

    Article  CAS  PubMed  Google Scholar 

  75. Meert K, Slomine BS, Silverstein FS et al (2019) One-year cognitive and neurologic outcomes in survivors of paediatric extracorporeal cardiopulmonary resuscitation. Resuscitation 139:299–307. https://doi.org/10.1016/j.resuscitation.2019.02.023

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kramer P, Mommsen A, Miera O et al (2020) Survival and Mid-Term Neurologic Outcome after Extracorporeal Cardiopulmonary Resuscitation in Children. Pediatr Crit Care Med 21:e316–e324. https://doi.org/10.1097/PCC.0000000000002291

    Article  PubMed  Google Scholar 

  77. Beshish A, Baginski M, Johnson TJ et al (2018) Functional status change among children with extracorporeal membrane oxygenation to support cardiopulmonary resuscitation in a pediatric cardiac ICU: A single institution report. Pediatr Crit Care Med 19

  78. Mattke A, Stocker C, Schibler A, Al E (2015) A newly established extra- corporeal life support assisted cardiopulmonary resuscitation (ECPR) program can achieve intact neurological outcome in 60% of children. Intensive Care Med 41:2227–2228

    Article  PubMed  Google Scholar 

  79. Sperotto F, Saengsin K, Danehy A et al (2021) Modeling severe functional impairment or death following ECPR in pediatric cardiac patients: Planning for an interventional trial. Resuscitation 167:12–21. https://doi.org/10.1016/j.resuscitation.2021.07.041

    Article  PubMed  Google Scholar 

  80. Alten J, Cooper DS, Klugman D et al (2023) Preventing Cardiac Arrest in the Pediatric Cardiac Intensive Care Unit Through Multicenter Collaboration. JAMA Pediatr 45229:1027–1036. https://doi.org/10.1001/jamapediatrics.2022.2238

    Article  Google Scholar 

  81. Park J, Song I, Lee J et al (2016) Optimal Chest Compression Position for Patients With a Single Ventricle During Cardiopulmonary Resuscitation*. Pediatr Crit Care Med 17:303–306. https://doi.org/10.1097/PCC.0000000000000658

    Article  PubMed  Google Scholar 

  82. Stromberg D, Carvalho K, Marsden A et al (2021) Standard CPR versus interposed abdominal compression CPR in shunted single ventricle patients: Comparison using a lumped parameter mathematical model. Cardiol Young. https://doi.org/10.1017/S1047951121003917

    Article  PubMed  Google Scholar 

  83. Cashen K, Reeder R, Ahmed T et al (2022) Feature Articles Sodium Bicarbonate Use During Pediatric Cardiopulmonary Resuscitation: A Secondary Analysis of the ICU-RESUScitation Project Trial. Pediatr Crit Care Med 23:784–792

    Article  PubMed  PubMed Central  Google Scholar 

  84. Dhillon G, Kleinman M, Staffa S et al (2022) Calcium Administration During Cardiopulmonary Resuscitation for In-Hospital Cardiac Arrest in Children With Heart Disease Is Associated With Worse Survival—A Report From the American Heart Association’s Get With The Guidelines-Resuscitation (GWTG-R) Regis. Pediatr Crit Care Med 23:860–871

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Kai-ou Tang, MA, Medical Illustrator at Boston Children’s Hospital, Harvard Medical School, for her artistic contribution to Figure 1.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Francesca Sperotto conceptualized and designed the study, reviewed the literature, collected the data, and wrote the first draft of the manuscript. Addison Gearhart contributed to the literature review and to write the first draft of the manuscript. Jessica A. Barreto and Victoria Habet contributed to the literature review and data collection. Ravi R, Thiagarajan and Eleonore Valencia reviewed the first draft of the manuscript. Aparna Hoskote and Peta Alexander, as well as all the other authors, commented on previous versions of the manuscript and contributed with significant intellectual content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Francesca Sperotto.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Communicated by Gregorio Milani

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sperotto, F., Gearhart, A., Hoskote, A. et al. Cardiac arrest and cardiopulmonary resuscitation in pediatric patients with cardiac disease: a narrative review. Eur J Pediatr 182, 4289–4308 (2023). https://doi.org/10.1007/s00431-023-05055-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-023-05055-4

Keywords

Navigation