Skip to main content

Advertisement

Log in

Neonatal outcome of small for gestational age preterm infants

  • Original Article
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Small for gestational age (SGA) preterm neonates (birth weight < −2 SDS) are considered to have increased risk of bronchopulmonary dysplasia (BPD) compared to appropriate for GA (AGA) neonates. It is unclear if SGA infants have increased risk for respiratory distress syndrome (RDS) and mortality. We analyzed data from 515 neonates born <30 weeks GA, 98(19%) were SGA. SGA were compared to AGA by univariate analysis and logistic regression analysis (LRA). Significant variables at univariate analysis were IUGR (67 vs 7%, p = 0.000), chorioamnionitis (1 vs 13%, p = 0.017), pre-eclampsia (62 vs 18%, p = 0.000), surfactant retreatment (47 vs 25%, p = 0.000), BPD (32 vs 20%, p = 0.015), death (30 vs 12%, p = 0.000), SatO2/FiO2 on day 3 (376 vs 433, p = 0.013), and SatO2/FiO2 ratio on day 28 (400 vs 448, p = 0.000). LRA found the following associations: regarding mortality, a decreased Sat/FiO2 ratio on day 3 (OR 1.99, 95% CI 1.26–3.16, p = 0.003); regarding BPD, surfactant retreatment (3.70, 2.11–6.49, p = 0.000), being SGA (2.69, 1.36–5.36, p = 0.005), decreasing GA (1.05, 1.03–1.08, p = 0.000), decreasing SatO2/FiO2 ratio on day 3 (1.25, 1.11–1.40, p = 0.000); and regarding severe RDS, pre-eclampsia (2.68, 1.58–4.55, p = 0.000) and decreasing GA (1.06, 1.04–1.08, p = 0.000).

Conclusions: In our cohort of preterm infants, being SGA was significantly associated with BPD, but not with increased risk of mortality or RDS due to multiple pathophysiologic mechanisms.

What is Known:

Small for gestational age preterm neonates are considered to have increased risk of bronchopulmonary dysplasia (BPD) compared to appropriate for GA neonates.

It is still unclear if SGA infants have increased risk for respiratory distress syndrome (RDS) and mortality.

What is New:

In our cohort of 515 preterm infants (19% SGA), being SGA was significantly associated with BPD, but not with increased risk of mortality or RDS.

These results may be explained by the heterogeneity of mechanisms leading to SGA condition and by multiple mechanisms involving lung growth impairment and other factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AGA:

appropriate for gestational age

BPD:

bronchopulmonary dysplasia

IUGR:

intrauterine growth restriction

LGA:

large for gestational age

PDA:

patent ductus arteriosus

RDS:

respiratory distress syndrome

SDS:

standard deviation scores

SGA:

small for gestational age

References

  1. Bagci S, Brosens E, Tibboel D, De Klein A, Ijsselstijn H, Wijers CHW, Roeleveld N, de Blaauw I et al (2016) More than fetal urine: enteral uptake of amniotic fluid as a major predictor for fetal growth during late gestation. Eur J Pediatr 175:825–831

    Article  PubMed  Google Scholar 

  2. Bartels DB, Kreienbrock L, Dammann O, Wenzlaff P, Poets CF (2005) Population based study on the outcome of small for gestational age newborns. Arch Dis Child Fetal Neonatal Ed 90:F53–F59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bertagnolli M, Nuyt AM, Thébaud B, Luu TM (2017) Endothelial progenitor cells as prognostic markers of preterm birth-associated complications. Stem Cells Transl Med 6(1):7–13

    Article  PubMed  Google Scholar 

  4. Carrera P, Di Resta C, Volonteri C, Castiglioni E, Bonfiglio S, Lazarevic D, Cittaro D, Stupka E, Ferrari M, Somaschini M, BPD and Genetics Study Group (2015) Exome sequencing and pathway analysis for identification of genetic variability relevant for bronchopulmonary dysplasia (BPD) in preterm newborns: a pilot study. Clin Chim Acta 451:39–45

    Article  CAS  PubMed  Google Scholar 

  5. De Vries L, Rennie JM. Preterm cerebral haemorrhage. In: Rennie JM, Roberton NRC. Textbook of Neonatology. 4th edition, Churchill Livingstone

  6. Eriksson L, Haglund B, Odlind V, Altman M, Ewald U, Kieler H (2015) Perinatal conditions related to growth restriction and inflammation are associated with an increased risk of bronchopulmonary dysplasia. Acta Paed 104:259–263

    Article  CAS  Google Scholar 

  7. Fenton TR (2003) A new growth chart for preterm babies: Babson and Benda’s chart updated with recent data and a new format. BMC Pediatr 3:13

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gagliardi L, Bellù R, Lista G, Zanini R, the Network Neonatale Lombardo Study Group (2011) Do differences in delivery room intubation explain different rates of bronchopulmonary dysplasia between hospitals? Arch Dis Child Fetal Neonatal Ed 96:F30–F35

    Article  PubMed  Google Scholar 

  9. Geva R, Eshel R, Leitner Y, Valevski AF, Harel S (2006) Neuropsychological outcome of children with intrauterine growth restriction: a 9-year prospective study. Pediatrics 118:91–100

    Article  PubMed  Google Scholar 

  10. Gortner L, Wauer RR, Stock GJ, Reiter HL, Reiss I, Jorch G et al (1999) Neonatal outcome in small for gestational age infants: do they really better? J Perinat Med 27:484–489

    Article  CAS  PubMed  Google Scholar 

  11. Gortner L, van Husen M, Thyen U, Gembruch U, Friedrich HJ, Landmann E (2003) Outcome in preterm small for gestational age infants compared to appropriate for gestational age preterms at the age of 2 years: a prospective study. Eur J Obstet Gynecol Reprod Biol 110(Suppl 1):S93–S97

    Article  PubMed  Google Scholar 

  12. Hough J, Trojman A, Schibler A (2016) Effect of time and body position on ventilation in premature infants. Ped Res 80(4):499–504

    Article  Google Scholar 

  13. International Committee for the Classification of Retinopathy of Prematurity (2005) The International Classification of Retinopathy of Prematurity Revised. Arch Ophtaml 123:991–999

    Article  Google Scholar 

  14. Jelin AC, Cheng YW, Shaffer BL, Kaimal AJ, Little SE, Caughey AB (2010) Early-onset preeclampsia and neonatal outcomes. J Matern Fetal Neonatal Med 23(5):389–392

    Article  PubMed  Google Scholar 

  15. Jeschke E, Biermann A, Günster C, Böhler T, Heller G, Hummler HD, Bührer C (2016) Mortality and major morbidity of very-low-birth-weight infants in Germany 2008–2012: a report based on administrative data. Front Ped 4:23

    Google Scholar 

  16. Kandasamy J, Olave N, Ballinger SW, Ambalavanan N (2017) Vascular endothelial mitochondrial function predicts death or pulmonary outcomes in preterm infants. Am J Respir Crit Care Med. doi:10.1164/rccm.201702-0353OC

  17. Kato T, Mandai T, Iwatani S, Koda T, Nagasaka M, Fujita K, Kurokawa D, Yamana K et al (2016) Extremely preterm infants small for gestational age are at risk for motor impairment at 3 years corrected age. Brain and Development 38:188–195

    Article  PubMed  Google Scholar 

  18. Kleiber N, Lefebvre E, Gauvin F, Tucci M, Robitaille N, Trottier H, Jouvet P, Ducruet T, Poitras N, Lacroix J, Emeriaud G (2015) Respiratory dysfunction associated with RBC transfusion in critically ill children: a prospective cohort study. Pediatr Crit Care Med 16:325–334

    Article  PubMed  Google Scholar 

  19. Lee AC, Katz J, Blencowe H, Cousens S, Kozuki N, Vogel JP, Adair L, Baqui AH et al (2013) National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010. Lancet Glob Health 1(1):e26–e36

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lu MS, Chen QZ, He JR, Wei XL, Lu JH, Li SH, Wen XX, Chan FF, Chen NN, Qiu L, Mai WB, Zhang RF, Hu CY, Xia HM, Qiu X (2016) Maternal dietary patterns and fetal growth: a large prospective cohort study in China. Nutrients 28:8(5)

    Google Scholar 

  21. MalhotraA SA, Miller SL, Jenkin G, Polglase GR (2014) The efficacy of surfactant replacement therapy in the growth-restricted preterm infant: what is the evidence? Front Pediatr 2:118

    Article  Google Scholar 

  22. Manuck TA, Levy PT, Gyamfi-Bannerman C, Jobe AH, Blaisdell CJ (2016) Prenatal and perinatal determinants of lung health and disease in early life: a National Heart, Lung, and Blood Institute Workshop report. JAMA Pediatr 170(5):e1545776

    Article  Google Scholar 

  23. Mercier JC, Hummler H, Durrmeyer X, Sanchez-Luna M, Carnielli VP, Field D, Greenough A, Van Overmeire B, Jonsson B, Hallman M, Baldassarre J et al (2010) Inhaled nitric oxide for prevention of bronchopulmonary dysplasia in premature babies (EUNO): a randomized controlled trial. Lancet 376:346–354

    Article  CAS  PubMed  Google Scholar 

  24. Pamidi S, Marc I, Simoneau G, Lavigne L, Olha A, Benedetti A, Sériès F, Fraser W (2016) Maternal sleep-disordered breathing and the risk of delivering small for gestational age infants: a prospective cohort study. Thorax 71(8):719–725

    Article  PubMed  Google Scholar 

  25. Pandharipande P, Shintani AK, Hagerman HE, St Jacques PJ, Rice TW, Sanders NW, Ware LB, Bernard GR, Ely EW (2009) Derivation and validation of SpO2/FiO2 ratio to impute for PaO2/FiO2 ratio in the respiratory component of the Sequential Organ Failure Assessment (SOFA) Score. Crit Care Med 37(4):1317–1321

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pearce BD, Nguyen PH, Gonzalez-Casanova I, Qian Y, Omer SB, Martorell R, Ramakrishnan U (2016) Pre-pregnancy maternal plasma cytokine levels and risks of small-for-gestational-age at birth. J Matern Fetal Neonatal Med 29:4065–4069

    Article  CAS  PubMed  Google Scholar 

  27. Qiu X, Lodha A, Shah PS, Sankaran K, Seshia MMK, Yee W, Jefferies A, Lee SK et al (2012) Neonatal outcomes of small for gestational age preterm infants in Canada. Am J Perinatol 29:87–94

    Article  PubMed  Google Scholar 

  28. Regev RH, Lusky A, Dolfin T, Litmanovitz I, Arnon S, Reichman B et al (2003) Excess mortality and morbidity among small-for-gestational-age premature infants: a population-based study. J Pediatr 143:186–189

    Article  PubMed  Google Scholar 

  29. Rozance PJ, Seedorf GJ, Brown A, Roe G, O’Meara MC, Gien J, Tang JR, Abman SH (2011) Intrauterine growth restriction decreases pulmonary alveolar and vessel growth and causes pulmonary artery endothelial cell dysfunction in vitro in fetal sheep. Am J Physiol Lung Cell Mol Physiol 301:L860–L871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ruiz M, Goldblatt P, Morrison J, Kukla L, Švancara J, Riitta-Järvelin M, Taanila A, Saurel-Cubizolles MJ et al (2015) Mother’s education and the risk of preterm and small for gestational age birth: a DRIVERS meta-analysis of 12 European cohorts. J Epidemiol Community Health 69:826–833

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sharma P, McKay K, Rosenkrantz TS, Hussain N (2004) Comparisons of mortality and pre-discharge respiratory outcomes in small-for-gestational-age and appropriate-for-gestational-age premature infants. BMC Pediatr 4:9

    Article  PubMed  PubMed Central  Google Scholar 

  32. Slaughter-Acey JC, Holzman C, Calloway D, Tian Y (2016) Movin’ on up: socioeconomic mobility and the risk of delivering a small-for-gestational age infant. Matern Child Health J 20:613–622

    Article  PubMed  PubMed Central  Google Scholar 

  33. Soudée S, Vuillemin L, Alberti C et al (2014) Fetal growth restriction is worse than extreme prematurity for the developing lung. Neonatology 106:304–310

    Article  PubMed  Google Scholar 

  34. Stoll BJ, Hansen NI, Bell EF, Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network et al (2015) Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993–2012. JAMA 314(10):1039–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Plavka R, Saugstad OD, Simeoni U et al (2016) European consensus guidelines on the management of respiratory distress syndrome—2016 update. Neonatology 111:107–125

    Article  PubMed  Google Scholar 

  36. Thébaud B, Abman SH (2007) Bronchopulmonary dysplasia where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease. Am J Respir Crit Care Med 175:978–985

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tul N, Lasic M, Bricelj K, Bregar AT, Verdenik I, Lucovnik M, Blickstein I (2016) Outcome of small for gestational age preterm singletons: a population-based cohort study. J Perinat Med 44:941–944

    PubMed  Google Scholar 

  38. Turitz AL, Gyamfi-Bannerman C. (2016) Comparison of respiratory outcomes between preterm small-for-gestational-age and appropriate-for-gestational-age infants. Am J Perinatol. Epub 2016 Dec 8

  39. Tyson JE, Kennedy K, Broyles S, Rosenfeld CR (1995) The small for gestational age infant: accelerated or delayed pulmonary maturation? Increased or decreased survival? Pediatrics 95:534–538

    CAS  PubMed  Google Scholar 

  40. Uberos J, Lardón-Fernández M, Machado-Casas I, Molina-Oya M, Narbona-López E (2016) Nutrition in extremely low birth weight infants: impact on bronchopulmonary dysplasia. Minerva Pediatr 68(6):419–426

    PubMed  Google Scholar 

  41. Unterscheider J, Daly S, Geary MP, Kennelly MM, McAuliffe FM, O'Donoghue K et al (2013) Optimizing the definition of intrauterine growth restriction: the multicenter prospective PORTO study. Am J Obstet Gynecol 208(290):e1–e6

    Google Scholar 

  42. Walsh MC, Kliegman RM (1986) Necrotizing enterocolitis: treatment based on staging criteria. Pediatr Clin N Am 33:179–201

    Article  CAS  Google Scholar 

  43. Walsh MC, Yao Q, Gettner P, Hale E, Collins M, Hensman A et al (2004) Impact of a physiologic definition on bronchopulmonary dysplasia rates. Pediatrics 114:1305–1311

    Article  PubMed  Google Scholar 

  44. Walsh MC, Di Fiore JM, Martin RJ, Gantz M, Carlo WA, Finer N (2016) Association of oxygen target and growth status with increased mortality in small for gestational age infants: further analysis of the surfactant, Positive Pressure and Pulse Oximetry Randomized Trial. JAMA Pediatr 170:292–294

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang Y, Chen HJ (2012) Use of percentiles and Z-scores in anthropometry. In: Preedy VR (ed) Handbook of anthropometry: physical measures of human form in health and disease. Springer-Verlag, New York, pp 29–48

    Chapter  Google Scholar 

  46. Wikström AK, Gunnarsdottir J, Nelander M, Simic M, Stephansson O, Cnattingius S (2016) Prehypertension in pregnancy and risks of small for gestational age infant and stillbirth. Hypertension 67:640–646

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dr. Nobile conceptualized the study, analyzed the data, wrote and approved the manuscript.

Dr. Marchionni collected and analyzed the data and approved the manuscript.

Dr. Carnielli wrote and approved the manuscript.

Corresponding author

Correspondence to Stefano Nobile.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

None.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

For this type of study formal consent is not required.

Additional information

Communicated by Patrick Van Reempts

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nobile, S., Marchionni, P. & Carnielli, V.P. Neonatal outcome of small for gestational age preterm infants. Eur J Pediatr 176, 1083–1088 (2017). https://doi.org/10.1007/s00431-017-2957-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-017-2957-1

Keywords

Navigation