Skip to main content
Log in

Thymic size correlates with cord blood zinc levels in low-birth-weight newborns

  • Original Article
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Thymus is essential for immunity as it provides environment for T cell differentiation and maturation. There is limited information on various factors which determine thymic size at birth. We studied the influence of cord blood zinc and copper levels and maternal and neonatal nutritional status on thymic size in term low-birth-weight (LBW) newborns. A prospective observational study on 44 term LBW (<2,500 g) newborns (cases) and 71 gestational age-matched newborns weighing ≥2,500 g (controls). Sonographically determined thymic index was correlated to cord blood zinc and copper levels and maternal and neonatal nutritional status. Thymic index measured 3.74 ± 1.57 cm3 in LBW newborns compared to 4.90 ± 2.33 cm3 in normal-birth-weight newborns. Thymic index was significantly correlated to cord blood zinc levels but not to cord blood copper levels and had linear relationship to the maternal body mass index and midarm circumference and neonatal anthropometric parameters. Conclusion: Thymic index is linearly related to cord blood zinc levels and maternal and neonatal nutritional status. Compared to thymic size in the Western newborns, the thymus is less than half in size in Indian newborns of normal birth weight. Reduced thymic size in Indian newborns in general and LBW infants in particular may have consequences for their immune competence and the risk of infections. Improving nutrition of pregnant women, particularly zinc nutriture might favorably influence thymic size in their offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aaby P, Marx C, Trautner S, Rudaa D, Hasselbalch H, Jensen H, Lisse I (2002) Thymus size at birth is associated with infant mortality: a community study from Guinea-Bissau. Acta Paediatr 91:698–703

    Article  CAS  PubMed  Google Scholar 

  2. Adam EJ, Ignotus PI (1993) Sonography of the thymus in healthy children: frequency of visualization, size and appearance. AJR Am J Roentgenol 161:153–155

    Article  CAS  PubMed  Google Scholar 

  3. Akman I, Arioglu P, Koroglu OA, Sakalli M, Ozek E, Topuzoglu A et al (2006) Maternal zinc and cord blood zinc, insulin-like growth factor-1, and insulin-like growth factor binding protein-3 levels in small-for-gestational-age newborns. Clin Exp Obstet Gynecol 33:238–240

    CAS  PubMed  Google Scholar 

  4. Azad R, Magu S, Gathwala G (2011) Sonographic assessment of the thymus and the measurement of the thymic size in healthy neonates from north India. J Clin Diagn Res 5:1406–1409

    Google Scholar 

  5. Ballard JL, Khoury JC, Wedling K, Wang L, Eilers-Walsman BL, Lipp R (1991) New Ballard score expanded to include premature infants. J Pediatr 119:417–423

    Article  CAS  PubMed  Google Scholar 

  6. Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, de Onis M et al (2013) Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382:427–451

    Article  PubMed  Google Scholar 

  7. Chandra RK (1981) Serum thymic hormone activity and cell-mediated immunity in healthy neonates, preterm infants, and small for gestational age infants. Pediatrics 67:407–411

    CAS  PubMed  Google Scholar 

  8. Collinson AC, Moore SE, Cole TJ, Prentice AM (2003) Birth season and environmental influences on patterns of thymic growth in rural Gambian infants. Acta Paediatr 92:1014–1020

    Article  CAS  PubMed  Google Scholar 

  9. Cromi A, Ghezzi F, Raffaelli R, Bergamini V, Siesto G, Bolis P (2009) Ultrasonographic measurement of thymus size in IUGR fetuses: a marker of the fetal immunoendocrine response to malnutrition. Ultrasound Obstet Gynecol 33:421–426

    Article  CAS  PubMed  Google Scholar 

  10. Crosby WH, Munn JI, Furth FW (1954) Stanardadizing a method for clinical haemoglobinometry. US Armed Forces Med J 5:693–696

    CAS  Google Scholar 

  11. Dardenne M, Boukaiba N, Gagnerault MC, Homo-Delarche F, Chappuis P, Lemonnier D, Savino W (1993) Restoration of the thymus in aging mice by in vivo zinc supplementation. Clin Immunol Immunopathol 66:127–135

    Article  CAS  PubMed  Google Scholar 

  12. Fraker PJ (1983) Zinc deficiency: a common immunodeficiency state. Surv Immunol Res 2:155–163

    CAS  PubMed  Google Scholar 

  13. Fraker PJ, King LE, Laakko T, Vollmer TL (2000) The dynamic link between the integrity of the immune system and zinc status. J Nutr 130:1399S–1406S

    CAS  PubMed  Google Scholar 

  14. Gibson RS (1990) Principles of nutritional assessment. NY: Oxford University Press, New York

    Google Scholar 

  15. Greenwood PL, Hunt AS, Bell AW (2004) Effects of birth weight and postnatal nutrition on neonatal sheep: IV. Organ Growth J Anim Sci 82:422–428

    CAS  Google Scholar 

  16. Hartge R, Jenkins DM, Kohler HG (1978) Low thymic weight in small-for-dates babies. Eur J Obstet Gynecol Reprod Biol 8:153–155

    Article  CAS  PubMed  Google Scholar 

  17. Hasselbalch H, Ersbøll AK, Jeppesen DL, Nielsen MB (1999) Thymus size in infants from birth until 24 months of age evaluated by ultrasound. A longitudinal prediction model for the thymic index. Acta Radiol 40:41–44

    Google Scholar 

  18. Hasselbalch H, Jeppeson LD, Engelmann DM, Michaelsen KF, Nielsen MB (1996) Decreased thymus size in formula fed infants compared with breast fed infants. Acta Paediatr 85:1029–1032

    Article  CAS  PubMed  Google Scholar 

  19. Hasselbalch H, Jeppeson LD, Ersboll AK, Engelmann DM, Nielsen MB (1997) Thymus size evaluated by sonography. Acta Radiol 38:222–227

    CAS  PubMed  Google Scholar 

  20. Hasselbalch H, Nielsen MB, Jeppesen D, Pederson JF, Karkov J (1996) Sonographic measurement of the thymus in infants. Eur Radiol 6:700–703

    Article  CAS  PubMed  Google Scholar 

  21. Iscan A, Tarhan S, Guven H, Bilgi Y, Yuncu M (2000) Sonographic measurement of the thymus in newborns: close association between thymus size and birth weight. Eur J Pediatr 159:223–224

    Article  CAS  PubMed  Google Scholar 

  22. Khadem N, Mohammadzadeh A, Farhat AS, Valaee L, Khajedaluee M, Parizadeh SM (2012) Relationship between Low birth weight neonate and maternal serum zinc concentration. Iran Red Crescent Med J 14:240–244

    CAS  PubMed Central  PubMed  Google Scholar 

  23. King JC (2000) Determinants of maternal zinc status during pregnancy. Am J Clin Nutr 71:1334–1343

    Google Scholar 

  24. Koller LD, Mulhern SA, Frankel NC, Steven MG, Williams JR (1987) Immune dysfunction in rats fed a diet deficient in copper. Am J Clin Nutr 45:997–1006

    CAS  PubMed  Google Scholar 

  25. Lewis VM, Twomey JJ, Bealmear P, Goldstein G, Good RA (1978) Age, thymic involution, and circulating thymic hormone activity. J Clin Endocrinol Metab 47:145–150

    Article  CAS  PubMed  Google Scholar 

  26. McDade TW, Beck MA, Kuzawa CW, Adair LS (2001) Prenatal undernutrition and postnatal growth are associated with adolescent thymic function. J Nutr 131:1225–1231

    CAS  PubMed  Google Scholar 

  27. Mocchegiani E, Santarelli L, Muzzioli M, Fabris N (1995) Reversibility of the thymic involution and of age-related peripheral immune dysfunctions by zinc supplementation in old mice. Int J Immunopharmacol 17:703–718

    Article  CAS  PubMed  Google Scholar 

  28. National Neonatalogy Forum of India (2001) National neonatal perinatal database-report for year 2000. National Neonatology Forum, New Delhi, India

    Google Scholar 

  29. Olearo E, Oberto M, Oggè G, Botta G, Pace C, Gaglioti P et al (2012) Thymic volume in healthy, small for gestational age and growth restricted fetuses. Prenat Diagn 32:662–667

    Article  PubMed  Google Scholar 

  30. Prasad AS (2007) Zinc: mechanisms of host defense. J Nutr 137:1345–1349

    CAS  PubMed  Google Scholar 

  31. Prasad AS, Oberleas D (1971) Changes in activities of zinc-dependent enzymes in zinc-deficient tissues of rats. J Appl Physiol 31:842–846

    CAS  PubMed  Google Scholar 

  32. Raqib R, Alam DS, Sarker P, Ahmad SM, Ara G, Yunus M et al (2007) Low birth weight is associated with altered immune function in rural Bangladeshi children: a birth cohort study. Am J Clin Nutr 85:845–852

    CAS  PubMed  Google Scholar 

  33. Savino W (2002) The thymus gland is a target in malnutrition. Eur J Clin Nutr 56:S46–S49

    Article  CAS  PubMed  Google Scholar 

  34. Savino W (2006) The thymus is a common target organ in infectious diseases. PLoS Pathog 2:e62

    Article  PubMed Central  PubMed  Google Scholar 

  35. United Nations Children’s Fund and World Health Organization (2004) Low birth weight: country, regional and global estimates. UNICEF, New York

    Google Scholar 

  36. Yekeler E, Tambag A, Tunaci A, Genchellac H, Dursun M, Gokcay G et al (2004) Analysis of the thymus in 151 healthy infants from 0 to 2 years of age. J Ultrasound Med 23:1321–1326

    Google Scholar 

Download references

Acknowledgment

AK conceived and designed the study, analyzed the data, and drafted the manuscript. MP collected and analyzed the data and helped to draft the manuscript. SB analyzed the data, performed the statistical analysis, and drafted the manuscript. RCS performed the sonography and helped to draft the manuscript. RKA analyzed the samples and helped to draft the manuscript. All authors read and approved the final manuscript.

Source of funding

None.

Conflict of interest

None of the authors have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar.

Additional information

Communicated by Patrick Van Reempts

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, A., Pandey, M., Basu, S. et al. Thymic size correlates with cord blood zinc levels in low-birth-weight newborns. Eur J Pediatr 173, 1083–1087 (2014). https://doi.org/10.1007/s00431-014-2293-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-014-2293-7

Keywords

Navigation