Skip to main content

Advertisement

Log in

iTRAQ-based quantitative proteomics reveals important host factors involved in the high pathogenicity of the H5N1 avian influenza virus in mice

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

We previously reported a pair of H5N1 avian influenza viruses which are genetically similar but differ greatly in their virulence in mice. A/Chicken/Jiangsu/k0402/2010 (CK10) is highly lethal to mice, whereas A/Goose/Jiangsu/k0403/2010 (GS10) is avirulent. In this study, to investigate the host factors that account for their virulence discrepancy, we compared the pathology and host proteome of the CK10- or GS10-infected mouse lung. Moderate lung injury was observed from CK10-infected animals as early as the first day of infection, and the pathology steadily progressed at later time point. However, only mild lesions were observed in GS10-infected mouse lung at the late infection stage. Using the quantitative iTRAQ coupled LC–MS/MS method, we first found that more significantly differentially expressed (DE) proteins were stimulated by GS10 compared with CK10. However, bio-function analysis of the DE proteins suggested that CK10 induced much stronger inflammatory response-related functions than GS10. Canonical pathway analysis also demonstrated that CK10 highly activated the “Acute Phase Response Signaling,” which results in a wide range of biological activities in response to viral infection, including many inflammatory processes. Further in-depth analysis showed that CK10 exacerbated acute lung injury-associated responses, including inflammatory response, cell death, reactive oxygen species production and complement response. In addition, some of these identified proteins that associated with the lung injury were further confirmed to be regulated in vitro. Therefore, our findings suggest that the early increased lung injury-associated host response induced by CK10 may contribute to the lung pathology and the high virulence of this virus in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

SILAC:

Stable isotope labeling by amino acids in cell culture

iTRAQ:

Isobaric tags for relative and absolute quantitation

LC–MS/MS:

Liquid chromatography-tandem mass spectrometry

SCX:

Strong cation exchange

HPLC:

High-performance liquid chromatography

IPA:

Ingenuity Pathways Analysis

qRT-PCR:

Quantitative real-time RT-PCR

HCD:

Higher-energy collision-induced dissociation

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

LXR/RXR:

Liver X receptor/retinoid X receptor

FXR/RXR:

Farnesoid X receptor/retinoid X receptor

LPS:

Lipopolysaccharide

LTA:

Lymphotoxin alpha

References

  1. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56(1):152–179

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W, Chen J, Jie Z, Qiu H, Xu K, Xu X, Lu H, Zhu W, Gao Z, Xiang N, Shen Y, He Z, Gu Y, Zhang Z, Yang Y, Zhao X, Zhou L, Li X, Zou S, Zhang Y, Yang L, Guo J, Dong J, Li Q, Dong L, Zhu Y, Bai T, Wang S, Hao P, Yang W, Han J, Yu H, Li D, Gao GF, Wu G, Wang Y, Yuan Z, Shu Y (2013) Human infection with a novel avian-origin influenza A (H7N9) virus. New Engl J Med 368(20):1888–1897. doi:10.1056/NEJMoa1304459

    Article  CAS  PubMed  Google Scholar 

  3. Li Q, Zhou L, Zhou M, Chen Z, Li F, Wu H, Xiang N, Chen E, Tang F, Wang D, Meng L, Hong Z, Tu W, Cao Y, Li L, Ding F, Liu B, Wang M, Xie R, Gao R, Li X, Bai T, Zou S, He J, Hu J, Xu Y, Chai C, Wang S, Gao Y, Jin L, Zhang Y, Luo H, Yu H, Wang X, Gao L, Pang X, Liu G, Yan Y, Yuan H, Shu Y, Yang W, Wang Y, Wu F, Uyeki TM, Feng Z (2014) Epidemiology of human infections with avian influenza A(H7N9) virus in China. New Engl J Med 370(6):520–532. doi:10.1056/NEJMoa1304617

    Article  CAS  PubMed  Google Scholar 

  4. Yen HL, Webster RG (2009) Pandemic influenza as a current threat. Curr Top Microbiol Immunol 333:3–24. doi:10.1007/978-3-540-92165-3_1

    PubMed  Google Scholar 

  5. Herfst S, Schrauwen EJ, Linster M, Chutinimitkul S, de Wit E, Munster VJ, Sorrell EM, Bestebroer TM, Burke DF, Smith DJ, Rimmelzwaan GF, Osterhaus AD, Fouchier RA (2012) Airborne transmission of influenza A/H5N1 virus between ferrets. Science 336(6088):1534–1541. doi:10.1126/science.1213362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Imai M, Watanabe T, Hatta M, Das SC, Ozawa M, Shinya K, Zhong G, Hanson A, Katsura H, Watanabe S, Li C, Kawakami E, Yamada S, Kiso M, Suzuki Y, Maher EA, Neumann G, Kawaoka Y (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486(7403):420–428. doi:10.1038/nature10831

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pinto LH, Lamb RA (2006) The M2 proton channels of influenza A and B viruses. J Biol Chem 281(14):8997–9000. doi:10.1074/jbc.R500020200

    Article  CAS  PubMed  Google Scholar 

  8. Hayden FG (2001) Perspectives on antiviral use during pandemic influenza. Philos Trans R Soc Lond B Biol Sci 356(1416):1877–1884. doi:10.1098/rstb.2001.1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deyde VM, Xu X, Bright RA, Shaw M, Smith CB, Zhang Y, Shu Y, Gubareva LV, Cox NJ, Klimov AI (2007) Surveillance of resistance to adamantanes among influenza A(H3N2) and A(H1N1) viruses isolated worldwide. J Infect Dis 196(2):249–257. doi:10.1086/518936

    Article  CAS  PubMed  Google Scholar 

  10. Hauge SH, Dudman S, Borgen K, Lackenby A, Hungnes O (2009) Oseltamivir-resistant influenza viruses A (H1N1), Norway, 2007–2008. Emerg Infect Dis 15(2):155–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hurt AC, Hardie K, Wilson NJ, Deng YM, Osbourn M, Gehrig N, Kelso A (2011) Community transmission of oseltamivir-resistant A(H1N1)pdm09 influenza. New Engl J Med 365(26):2541–2542. doi:10.1056/NEJMc1111078

    Article  CAS  PubMed  Google Scholar 

  12. Saito R, Li D, Suzuki Y, Sato I, Masaki H, Nishimura H, Kawashima T, Shirahige Y, Shimomura C, Asoh N, Degawa S, Ishikawa H, Sato M, Shobugawa Y, Suzuki H (2007) High prevalence of amantadine-resistance influenza a (H3N2) in six prefectures, Japan, in the 2005–2006 season. J Med Virol 79(10):1569–1576. doi:10.1002/jmv.20946

    Article  CAS  PubMed  Google Scholar 

  13. Brass AL, Huang IC, Benita Y, John SP, Krishnan MN, Feeley EM, Ryan BJ, Weyer JL, van der Weyden L, Fikrig E, Adams DJ, Xavier RJ, Farzan M, Elledge SJ (2009) The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 139(7):1243–1254. doi:10.1016/j.cell.2009.12.017

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hao L, Sakurai A, Watanabe T, Sorensen E, Nidom CA, Newton MA, Ahlquist P, Kawaoka Y (2008) Drosophila RNAi screen identifies host genes important for influenza virus replication. Nature 454(7206):890–893. doi:10.1038/nature07151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Karlas A, Machuy N, Shin Y, Pleissner KP, Artarini A, Heuer D, Becker D, Khalil H, Ogilvie LA, Hess S, Maurer AP, Muller E, Wolff T, Rudel T, Meyer TF (2010) Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature 463(7282):818–822. doi:10.1038/nature08760

    Article  CAS  PubMed  Google Scholar 

  16. Konig R, Stertz S, Zhou Y, Inoue A, Hoffmann HH, Bhattacharyya S, Alamares JG, Tscherne DM, Ortigoza MB, Liang Y, Gao Q, Andrews SE, Bandyopadhyay S, De Jesus P, Tu BP, Pache L, Shih C, Orth A, Bonamy G, Miraglia L, Ideker T, Garcia-Sastre A, Young JA, Palese P, Shaw ML, Chanda SK (2010) Human host factors required for influenza virus replication. Nature 463(7282):813–817. doi:10.1038/nature08699

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shapira SD, Gat-Viks I, Shum BO, Dricot A, de Grace MM, Wu L, Gupta PB, Hao T, Silver SJ, Root DE, Hill DE, Regev A, Hacohen N (2009) A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell 139(7):1255–1267. doi:10.1016/j.cell.2009.12.018

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sui B, Bamba D, Weng K, Ung H, Chang S, Van Dyke J, Goldblatt M, Duan R, Kinch MS, Li WB (2009) The use of random homozygous gene perturbation to identify novel host-oriented targets for influenza. Virology 387(2):473–481. doi:10.1016/j.virol.2009.02.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. de Chassey B, Meyniel-Schicklin L, Aublin-Gex A, Andre P, Lotteau V (2012) Genetic screens for the control of influenza virus replication: from meta-analysis to drug discovery. Mol BioSyst 8(4):1297–1303. doi:10.1039/c2mb05416g

    Article  PubMed  Google Scholar 

  20. Mehle A, Doudna JA (2010) A host of factors regulating influenza virus replication. Viruses 2(2):566–573. doi:10.3390/v2020566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Watanabe T, Watanabe S, Kawaoka Y (2010) Cellular networks involved in the influenza virus life cycle. Cell Host Microbe 7(6):427–439. doi:10.1016/j.chom.2010.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baas T, Baskin CR, Diamond DL, Garcia-Sastre A, Bielefeldt-Ohmann H, Tumpey TM, Thomas MJ, Carter VS, Teal TH, Van Hoeven N, Proll S, Jacobs JM, Caldwell ZR, Gritsenko MA, Hukkanen RR, Camp DG 2nd, Smith RD, Katze MG (2006) Integrated molecular signature of disease: analysis of influenza virus-infected macaques through functional genomics and proteomics. J Virol 80(21):10813–10828. doi:10.1128/JVI.00851-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, Yi EC, Dai H, Thorsson V, Eng J, Goodlett D, Berger JP, Gunter B, Linseley PS, Stoughton RB, Aebersold R, Collins SJ, Hanlon WA, Hood LE (2004) Integrated genomic and proteomic analyses of gene expression in Mammalian cells. Mol Cell Proteom 3(10):960–969. doi:10.1074/mcp.M400055-MCP200

    Article  CAS  Google Scholar 

  24. Coombs KM, Berard A, Xu W, Krokhin O, Meng X, Cortens JP, Kobasa D, Wilkins J, Brown EG (2010) Quantitative proteomic analyses of influenza virus-infected cultured human lung cells. J Virol 84(20):10888–10906. doi:10.1128/JVI.00431-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dove BK, Surtees R, Bean TJ, Munday D, Wise HM, Digard P, Carroll MW, Ajuh P, Barr JN, Hiscox JA (2012) A quantitative proteomic analysis of lung epithelial (A549) cells infected with 2009 pandemic influenza A virus using stable isotope labelling with amino acids in cell culture. Proteomics 12(9):1431–1436. doi:10.1002/pmic.201100470

    Article  CAS  PubMed  Google Scholar 

  26. Kroeker AL, Ezzati P, Halayko AJ, Coombs KM (2012) Response of primary human airway epithelial cells to influenza infection: a quantitative proteomic study. J Proteome Res 11(8):4132–4146. doi:10.1021/pr300239r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu L, Zhou J, Wang Y, Mason RJ, Funk CJ, Du Y (2012) Proteome alterations in primary human alveolar macrophages in response to influenza A virus infection. J Proteome Res 11(8):4091–4101. doi:10.1021/pr3001332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lietzen N, Ohman T, Rintahaka J, Julkunen I, Aittokallio T, Matikainen S, Nyman TA (2011) Quantitative subcellular proteome and secretome profiling of influenza A virus-infected human primary macrophages. PLoS Pathog 7(5):e1001340. doi:10.1371/journal.ppat.1001340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hu J, Zhao K, Liu X, Wang X, Chen Z (2012) Two highly pathogenic avian influenza H5N1 viruses of clade 2.3.2.1 with similar genetic background but with different pathogenicity in mice and ducks. Transbound Emerg Dis. doi:10.1111/j.1865-1682.2012.01325.x

    Google Scholar 

  30. Hu J, Hu Z, Song Q, Gu M, Liu X, Wang X, Hu S, Chen C, Liu H, Liu W, Chen S, Peng D (2013) The PA-gene-mediated lethal dissemination and excessive innate immune response contribute to the high virulence of H5N1 avian influenza virus in mice. J Virol 87(5):2660–2672. doi:10.1128/JVI.02891-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun Y, Qin K, Wang J, Pu J, Tang Q, Hu Y, Bi Y, Zhao X, Yang H, Shu Y, Liu J (2011) High genetic compatibility and increased pathogenicity of reassortants derived from avian H9N2 and pandemic H1N1/2009 influenza viruses. Proc Natl Acad Sci US A 108(10):4164–4169. doi:10.1073/pnas.1019109108

    Article  CAS  Google Scholar 

  32. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  33. Shilov IV, Seymour SL, Patel AA, Loboda A, Tang WH, Keating SP, Hunter CL, Nuwaysir LM, Schaeffer DA (2007) The paragon algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol Cell Proteom 6(9):1638–1655. doi:10.1074/mcp.T600050-MCP200

    Article  CAS  Google Scholar 

  34. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95(25):14863–14868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Saldanha AJ (2004) Java Treeview–extensible visualization of microarray data. Bioinformatics 20(17):3246–3248. doi:10.1093/bioinformatics/bth349

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Z, Zhang L, Hua Y, Jia X, Li J, Hu S, Peng X, Yang P, Sun M, Ma F, Cai Z (2010) Comparative proteomic analysis of plasma membrane proteins between human osteosarcoma and normal osteoblastic cell lines. BMC Cancer 10:206. doi:10.1186/1471-2407-10-206

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gabay C, Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340(6):448–454. doi:10.1056/NEJM199902113400607

    Article  CAS  PubMed  Google Scholar 

  38. Cray C, Zaias J, Altman NH (2009) Acute phase response in animals: a review. Comp Med 59(6):517–526

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kopf M, Abel B, Gallimore A, Carroll M, Bachmann MF (2002) Complement component C3 promotes T-cell priming and lung migration to control acute influenza virus infection. Nat Med 8(4):373–378. doi:10.1038/nm0402-373

    Article  CAS  PubMed  Google Scholar 

  40. Tran TH, Nguyen TL, Nguyen TD, Luong TS, Pham PM, Nguyen VV, Pham TS, Vo CD, Le TQ, Ngo TT, Dao BK, Le PP, Nguyen TT, Hoang TL, Cao VT, Le TG, Nguyen DT, Le HN, Nguyen KT, Le HS, Le VT, Christiane D, Tran TT, de Menno J, Schultsz C, Cheng P, Lim W, Horby P, Farrar J (2004) Avian influenza A (H5N1) in 10 patients in Vietnam. N Engl J Med 350(12):1179–1188. doi:10.1056/NEJMoa040419

    Article  PubMed  Google Scholar 

  41. Chotpitayasunondh T, Ungchusak K, Hanshaoworakul W, Chunsuthiwat S, Sawanpanyalert P, Kijphati R, Lochindarat S, Srisan P, Suwan P, Osotthanakorn Y, Anantasetagoon T, Kanjanawasri S, Tanupattarachai S, Weerakul J, Chaiwirattana R, Maneerattanaporn M, Poolsavathitikool R, Chokephaibulkit K, Apisarnthanarak A, Dowell SF (2005) Human disease from influenza A (H5N1), Thailand, 2004. Emerg Infect Dis 11(2):201–209. doi:10.3201/eid1102.041061

    Article  PubMed  PubMed Central  Google Scholar 

  42. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ, von Mering C (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39(Database issue):D561–D568. doi:10.1093/nar/gkq973

    Article  CAS  PubMed  Google Scholar 

  43. Gerke V, Creutz CE, Moss SE (2005) Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol 6(6):449–461. doi:10.1038/nrm1661

    Article  CAS  PubMed  Google Scholar 

  44. Hedhli N, Falcone DJ, Huang B, Cesarman-Maus G, Kraemer R, Zhai H, Tsirka SE, Santambrogio L, Hajjar KA (2012) The annexin A2/S100A10 system in health and disease: emerging paradigms. J Biomed Biotechnol 2012:406273. doi:10.1155/2012/406273

    Article  PubMed  PubMed Central  Google Scholar 

  45. Montecucco F, Favari E, Norata GD, Ronda N, Nofer JR, Vuilleumier N (2015) Impact of systemic inflammation and autoimmune diseases on apoA-I and HDL plasma levels and functions. Handb Exp Pharmacol 224:455–482. doi:10.1007/978-3-319-09665-0_14

    Article  CAS  PubMed  Google Scholar 

  46. Szretter KJ, Gangappa S, Lu X, Smith C, Shieh WJ, Zaki SR, Sambhara S, Tumpey TM, Katz JM (2007) Role of host cytokine responses in the pathogenesis of avian H5N1 influenza viruses in mice. J Virol 81(6):2736–2744

    Article  CAS  PubMed  Google Scholar 

  47. Perrone LA, Plowden JK, Garcia-Sastre A, Katz JM, Tumpey TM (2008) H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice. PLoS Pathog 4(8):e1000115. doi:10.1371/journal.ppat.1000115

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cameron CM, Cameron MJ, Bermejo-Martin JF, Ran L, Xu L, Turner PV, Ran R, Danesh A, Fang Y, Chan PK, Mytle N, Sullivan TJ, Collins TL, Johnson MG, Medina JC, Rowe T, Kelvin DJ (2008) Gene expression analysis of host innate immune responses during Lethal H5N1 infection in ferrets. J Virol 82(22):11308–11317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Baskin CR, Bielefeldt-Ohmann H, Tumpey TM, Sabourin PJ, Long JP, Garcia-Sastre A, Tolnay AE, Albrecht R, Pyles JA, Olson PH, Aicher LD, Rosenzweig ER, Murali-Krishna K, Clark EA, Kotur MS, Fornek JL, Proll S, Palermo RE, Sabourin CL, Katze MG (2009) Early and sustained innate immune response defines pathology and death in nonhuman primates infected by highly pathogenic influenza virus. Proc Natl Acad Sci USA 106(9):3455–3460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lu Q, Bai J, Zhang L, Liu J, Jiang Z, Michal JJ, He Q, Jiang P (2012) Two-dimensional liquid chromatography-tandem mass spectrometry coupled with isobaric tags for relative and absolute quantification (iTRAQ) labeling approach revealed first proteome profiles of pulmonary alveolar macrophages infected with porcine reproductive and respiratory syndrome virus. J Proteome Res 11(5):2890–2903. doi:10.1021/pr201266z

    Article  CAS  PubMed  Google Scholar 

  51. Liu J, Bai J, Lu Q, Zhang L, Jiang Z, Michal JJ, He Q, Jiang P (2013) Two-dimensional liquid chromatography-tandem mass spectrometry coupled with isobaric tags for relative and absolute quantification (iTRAQ) labeling approach revealed first proteome profiles of pulmonary alveolar macrophages infected with porcine circovirus type 2. J Proteom 79:72–86. doi:10.1016/j.jprot.2012.11.024

    Article  CAS  Google Scholar 

  52. Qi W, Tian J, Su S, Huang L, Li H, Liao M (2015) Identification of potential virulence determinants associated H9N2 avian influenza virus PB2 E627K mutation by comparative proteomics. Proteomics 15(9):1512–1524. doi:10.1002/pmic.201400309

    Article  CAS  PubMed  Google Scholar 

  53. Dapat C, Saito R, Suzuki H, Horigome T (2014) Quantitative phosphoproteomic analysis of host responses in human lung epithelial (A549) cells during influenza virus infection. Virus Res 179:53–63. doi:10.1016/j.virusres.2013.11.012

    Article  CAS  PubMed  Google Scholar 

  54. Kumar Y, Liang C, Limmon GV, Liang L, Engelward BP, Ooi EE, Chen J, Tannenbaum SR (2014) Molecular analysis of serum and bronchoalveolar lavage in a mouse model of influenza reveals markers of disease severity that can be clinically useful in humans. PLoS ONE 9(2):e86912. doi:10.1371/journal.pone.0086912

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ricklin D, Reis ES, Lambris JD (2016) Complement in disease: a defence system turning offensive. Nat Rev Nephrol 12(7):383–401. doi:10.1038/nrneph.2016.70

    Article  CAS  PubMed  Google Scholar 

  56. Garcia CC, Weston-Davies W, Russo RC, Tavares LP, Rachid MA, Alves-Filho JC, Machado AV, Ryffel B, Nunn MA, Teixeira MM (2013) Complement C5 activation during influenza A infection in mice contributes to neutrophil recruitment and lung injury. PLoS ONE 8(5):e64443. doi:10.1371/journal.pone.0064443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sun S, Zhao G, Liu C, Wu X, Guo Y, Yu H, Song H, Du L, Jiang S, Guo R, Tomlinson S, Zhou Y (2013) Inhibition of complement activation alleviates acute lung injury induced by highly pathogenic avian influenza H5N1 virus infection. Am J Respir Cell Mol Biol 49(2):221–230. doi:10.1165/rcmb.2012-0428OC

    Article  CAS  PubMed  Google Scholar 

  58. Wang R, Xiao H, Guo R, Li Y, Shen B (2015) The role of C5a in acute lung injury induced by highly pathogenic viral infections. Emerg Microbes Infect 4(5):e28. doi:10.1038/emi.2015.28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nascimento EJM, Silva AM, Cordeiro MT, Brito CA, Gil LHVG, Braga-Neto U, Marques ETA (2009) Alternative complement pathway deregulation is correlated with dengue severity. PLoS ONE 4(8):e6782. doi:10.1371/journal.pone.0006782

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wiegner R, Chakraborty S, Huber-Lang M (2016) Complement-coagulation crosstalk on cellular and artificial surfaces. Immunobiology. doi:10.1016/j.imbio.2016.06.005

    PubMed  Google Scholar 

  61. Keller TT, van der Sluijs KF, de Kruif MD, Gerdes VE, Meijers JC, Florquin S, van der Poll T, van Gorp EC, Brandjes DP, Buller HR, Levi M (2006) Effects on coagulation and fibrinolysis induced by influenza in mice with a reduced capacity to generate activated protein C and a deficiency in plasminogen activator inhibitor type 1. Circ Res 99(11):1261–1269. doi:10.1161/01.RES.0000250834.29108.1a

    Article  CAS  PubMed  Google Scholar 

  62. Schouten M, Sluijs KF, Gerlitz B, Grinnell BW, Roelofs JJ, Levi MM, van’t Veer C, van der Poll T (2010) Activated protein C ameliorates coagulopathy but does not influence outcome in lethal H1N1 influenza: a controlled laboratory study. Crit Care 14(2):R65. doi:10.1186/cc8964

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kobasa D, Jones SM, Shinya K, Kash JC, Copps J, Ebihara H, Hatta Y, Kim JH, Halfmann P, Hatta M, Feldmann F, Alimonti JB, Fernando L, Li Y, Katze MG, Feldmann H, Kawaoka Y (2007) Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 445(7125):319–323

    Article  CAS  PubMed  Google Scholar 

  64. Suzuki K, Okada H, Itoh T, Tada T, Mase M, Nakamura K, Kubo M, Tsukamoto K (2009) Association of increased pathogenicity of Asian H5N1 highly pathogenic avian influenza viruses in chickens with highly efficient viral replication accompanied by early destruction of innate immune responses. J Virol 83(15):7475–7486. doi:10.1128/JVI.01434-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Oldstone MB (2013) Lessons learned and concepts formed from study of the pathogenesis of the two negative-strand viruses lymphocytic choriomeningitis and influenza. Proc Natl Acad Sci USA 110(11):4180–4183. doi:10.1073/pnas.1222025110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vogel AJ, Harris S, Marsteller N, Condon SA, Brown DM (2014) Early cytokine dysregulation and viral replication are associated with mortality during lethal influenza infection. Viral Immunol 27(5):214–224. doi:10.1089/vim.2013.0095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hinshaw VS, Olsen CW, Dybdahl-Sissoko N, Evans D (1994) Apoptosis: a mechanism of cell killing by influenza A and B viruses. J Virol 68(6):3667–3673

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Nichols JE, Niles JA, Roberts NJ Jr (2001) Human lymphocyte apoptosis after exposure to influenza A virus. J Virol 75(13):5921–5929. doi:10.1128/JVI.73.13.5921-5929.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lam WY, Tang JW, Yeung AC, Chiu LC, Sung JJ, Chan PK (2008) Avian influenza virus A/HK/483/97(H5N1) NS1 protein induces apoptosis in human airway epithelial cells. J Virol 82(6):2741–2751. doi:10.1128/JVI.01712-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Price GE, Smith H, Sweet C (1997) Differential induction of cytotoxicity and apoptosis by influenza virus strains of differing virulence. J Gen Virol 78(Pt 11):2821–2829

    Article  CAS  PubMed  Google Scholar 

  71. Schultz-Cherry S, Dybdahl-Sissoko N, Neumann G, Kawaoka Y, Hinshaw VS (2001) Influenza virus ns1 protein induces apoptosis in cultured cells. J Virol 75(17):7875–7881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Brydon EW, Morris SJ, Sweet C (2005) Role of apoptosis and cytokines in influenza virus morbidity. FEMS Microbiol Rev 29(4):837–850

    Article  CAS  PubMed  Google Scholar 

  73. Tumpey TM, Lu X, Morken T, Zaki SR, Katz JM (2000) Depletion of lymphocytes and diminished cytokine production in mice infected with a highly virulent influenza A (H5N1) virus isolated from humans. J Virol 74(13):6105–6116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kash JC, Xiao Y, Davis AS, Walters KA, Chertow DS, Easterbrook JD, Dunfee RL, Sandouk A, Jagger BW, Schwartzman LM, Kuestner RE, Wehr NB, Huffman K, Rosenthal RA, Ozinsky A, Levine RL, Doctrow SR, Taubenberger JK (2014) Treatment with the reactive oxygen species scavenger EUK-207 reduces lung damage and increases survival during 1918 influenza virus infection in mice. Free Radic Biol Med 67:235–247. doi:10.1016/j.freeradbiomed.2013.10.014

    Article  CAS  PubMed  Google Scholar 

  75. Imai Y, Kuba K, Neely GG, Yaghubian-Malhami R, Perkmann T, van Loo G, Ermolaeva M, Veldhuizen R, Leung YHC, Wang HL, Liu HL, Sun Y, Pasparakis M, Kopf M, Mech C, Bavari S, Peiris JSM, Slutsky AS, Akira S, Hultqvist M, Holmdahl R, Nicholls J, Jiang CY, Binder CJ, Penninger JM (2008) Identification of oxidative stress and toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133(2):235–249. doi:10.1016/j.cell.2008.02.043

    Article  CAS  PubMed  Google Scholar 

  76. Vlahos R, Stambas J, Selemidis S (2012) Suppressing production of reactive oxygen species (ROS) for influenza A virus therapy. Trends Pharmacol Sci 33(1):3–8. doi:10.1016/j.tips.2011.09.001

    Article  CAS  PubMed  Google Scholar 

  77. He G, Dong C, Luan Z, McAllan BM, Xu T, Zhao L, Qiao J (2013) Oxygen free radical involvement in acute lung injury induced by H5N1 virus in mice. Influenza Respir Viruses 7(6):945–953. doi:10.1111/irv.12067

    Article  CAS  Google Scholar 

  78. Ye S, Lowther S, Stambas J (2015) Inhibition of reactive oxygen species production ameliorates inflammation induced by influenza A viruses via upregulation of SOCS1 and SOCS3. J Virol 89(5):2672–2683. doi:10.1128/JVI.03529-14

    Article  PubMed  Google Scholar 

  79. Dawson TC, Beck MA, Kuziel WA, Henderson F, Maeda N (2000) Contrasting effects of CCR5 and CCR2 deficiency in the pulmonary inflammatory response to influenza A virus. Am J Pathol 156(6):1951–1959. doi:10.1016/S0002-9440(10)65068-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hogner K, Wolff T, Pleschka S, Plog S, Gruber AD, Kalinke U, Walmrath HD, Bodner J, Gattenlohner S, Lewe-Schlosser P, Matrosovich M, Seeger W, Lohmeyer J, Herold S (2013) Macrophage-expressed IFN-beta contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia. PLoS Pathog 9(2):e1003188. doi:10.1371/journal.ppat.1003188

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bordon J, Aliberti S, Fernandez-Botran R, Uriarte SM, Rane MJ, Duvvuri P, Peyrani P, Morlacchi LC, Blasi F, Ramirez JA (2013) Understanding the roles of cytokines and neutrophil activity and neutrophil apoptosis in the protective versus deleterious inflammatory response in pneumonia. Int J Infect Dis 17(2):e76–e83. doi:10.1016/j.ijid.2012.06.006

    Article  CAS  PubMed  Google Scholar 

  82. Lee WL, Downey GP (2001) Neutrophil activation and acute lung injury. Curr Opin Crit Care 7(1):1–7

    Article  CAS  PubMed  Google Scholar 

  83. Narasaraju T, Yang E, Samy RP, Ng HH, Poh WP, Liew AA, Phoon MC, van Rooijen N, Chow VT (2011) Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am J Pathol 179(1):199–210. doi:10.1016/j.ajpath.2011.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Buchweitz JP, Harkema JR, Kaminski NE (2007) Time-dependent airway epithelial and inflammatory cell responses induced by influenza virus A/PR/8/34 in C57BL/6 mice. Toxicol Pathol 35(3):424–435. doi:10.1080/01926230701302558

    Article  CAS  PubMed  Google Scholar 

  85. Kim MH, de Beer MC, Wroblewski JM, Charnigo RJ, Ji A, Webb NR, de Beer FC, van der Westhuyzen DR (2016) Impact of individual acute phase serum amyloid A isoforms on HDL metabolism in mice. J Lipid Res 57(6):969–979. doi:10.1194/jlr.M062174

    Article  CAS  PubMed  Google Scholar 

  86. Xu L, Badolato R, Murphy WJ, Longo DL, Anver M, Hale S, Oppenheim JJ, Wang JM (1995) A novel biologic function of serum amyloid A. Induction of T lymphocyte migration and adhesion. J Immunol 155(3):1184–1190

    CAS  PubMed  Google Scholar 

  87. Badolato R, Wang JM, Murphy WJ, Lloyd AR, Michiel DF, Bausserman LL, Kelvin DJ, Oppenheim JJ (1994) Serum amyloid A is a chemoattractant: induction of migration, adhesion, and tissue infiltration of monocytes and polymorphonuclear leukocytes. J Exp Med 180(1):203–209

    Article  CAS  PubMed  Google Scholar 

  88. He R, Sang H, Ye RD (2003) Serum amyloid A induces IL-8 secretion through a G protein-coupled receptor, FPRL1/LXA4R. Blood 101(4):1572–1581. doi:10.1182/blood-2002-05-1431

    Article  CAS  PubMed  Google Scholar 

  89. Furlaneto CJ, Campa A (2000) A novel function of serum amyloid A: a potent stimulus for the release of tumor necrosis factor-alpha, interleukin-1beta, and interleukin-8 by human blood neutrophil. Biochem Biophys Res Commun 268(2):405–408. doi:10.1006/bbrc.2000.2143

    Article  CAS  PubMed  Google Scholar 

  90. Lee HY, Kim MK, Park KS, Bae YH, Yun J, Park JI, Kwak JY, Bae YS (2005) Serum amyloid A stimulates matrix-metalloproteinase-9 upregulation via formyl peptide receptor like-1-mediated signaling in human monocytic cells. Biochem Biophys Res Commun 330(3):989–998. doi:10.1016/j.bbrc.2005.03.069

    Article  CAS  PubMed  Google Scholar 

  91. Hua S, Song C, Geczy CL, Freedman SB, Witting PK (2009) A role for acute-phase serum amyloid A and high-density lipoprotein in oxidative stress, endothelial dysfunction and atherosclerosis. Redox Rep 14(5):187–196. doi:10.1179/135100009X12525712409490

    Article  CAS  PubMed  Google Scholar 

  92. van der Westhuyzen DR, Cai L, de Beer MC, de Beer FC (2005) Serum amyloid A promotes cholesterol efflux mediated by scavenger receptor B-I. J Biol Chem 280(43):35890–35895. doi:10.1074/jbc.M505685200

    Article  PubMed  Google Scholar 

  93. Siegmund SV, Schlosser M, Schildberg FA, Seki E, De Minicis S, Uchinami H, Kuntzen C, Knolle PA, Strassburg CP, Schwabe RF (2016) Serum amyloid A induces inflammation, proliferation and cell death in activated hepatic stellate cells. PLoS ONE 11(3):e0150893. doi:10.1371/journal.pone.0150893

    Article  PubMed  PubMed Central  Google Scholar 

  94. Lopez-Campos JL, Calero C, Rojano B, Lopez-Porras M, Saenz-Coronilla J, Blanco AI, Sanchez-Lopez V, Tobar D, Montes-Worboys A, Arellano E (2013) C-reactive protein and serum amyloid a overexpression in lung tissues of chronic obstructive pulmonary disease patients: a case-control study. Int J Med Sci 10(8):938–947. doi:10.7150/ijms.6152

    Article  PubMed  PubMed Central  Google Scholar 

  95. Meek RL, Urieli-Shoval S, Benditt EP (1994) Expression of apolipoprotein serum amyloid A mRNA in human atherosclerotic lesions and cultured vascular cells: implications for serum amyloid A function. Proc Natl Acad Sci USA 91(8):3186–3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Danesh J, Whincup P, Walker M, Lennon L, Thomson A, Appleby P, Gallimore JR, Pepys MB (2000) Low grade inflammation and coronary heart disease: prospective study and updated meta-analyses. BMJ 321(7255):199–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liston P, Fong WG, Kelly NL, Toji S, Miyazaki T, Conte D, Tamai K, Craig CG, McBurney MW, Korneluk RG (2001) Identification of XAF1 as an antagonist of XIAP anti-Caspase activity. Nat Cell Biol 3(2):128–133. doi:10.1038/35055027

    Article  CAS  PubMed  Google Scholar 

  98. Micali OC, Cheung HH, Plenchette S, Hurley SL, Liston P, LaCasse EC, Korneluk RG (2007) Silencing of the XAF1 gene by promoter hypermethylation in cancer cells and reactivation to TRAIL-sensitization by IFN-beta. BMC Cancer 7:52. doi:10.1186/1471-2407-7-52

    Article  PubMed  PubMed Central  Google Scholar 

  99. Straszewski-Chavez SL, Visintin IP, Karassina N, Los G, Liston P, Halaban R, Fadiel A, Mor G (2007) XAF1 mediates tumor necrosis factor-alpha-induced apoptosis and X-linked inhibitor of apoptosis cleavage by acting through the mitochondrial pathway. J Biol Chem 282(17):13059–13072. doi:10.1074/jbc.M609038200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31502076), by the Jiangsu Provincial Natural Science Foundation of China (BK20150444), by the Special Financial Grant from the China Postdoctoral Science Foundation (2016T90515), by the National Key Research and Development Project of China (2016YFD0501601 and 2016YFD0500202), by the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (15KJB230006), by the National Key Technologies R&D Program of China (2015BAD12B01-3), by the earmarked fund for Modern Agro-industry Technology Research System (nycytx-41-G07) and by a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiufan Liu.

Ethics declarations

Conflict of interest

Jiao Hu, Zhao Gao, Xiaoquan Wang, Min Gu, Yanyan Liang, Xiaowen Liu, Shunlin Hu, Huimou Liu, Wenbo Liu, Sujuan Chen, Daxin Peng and Xiufan Liu declare that they have no conflict of interests.

Human rights statement

And this article does not contain any studies with human subjects performed by any of the authors.

Additional information

Jiao Hu and Zhao Gao have contributed equally to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Top one canonical pathway “Acute phase response signaling” induced by GS10. (TIFF 941 kb)

Figure S2

Top five canonical pathway “Complement system” triggered by CK10. (TIFF 816 kb)

Figure S3

Top four canonical pathway “Antigen presentation pathway” stimulated by CK10. (TIFF 1409 kb)

Figure S4

Network of virus–host interactions. Interactions among the viral proteins and the host factors identified here were visualized by using cytoscape (http://cytoscape.org/). This picture shows the protein–protein interactions of the DE proteins induced by GS10. (TIFF 1819 kb)

Figure S5

Network of virus–host interactions. Interactions among the viral proteins and the host factors identified here were visualized by using cytoscape (http://cytoscape.org/). This picture shows the direct protein–protein interactions of the DE proteins induced by CK10. (TIFF 297 kb)

Figure S6

Network of virus–host interactions. Interactions among the viral proteins and the host factors identified here were visualized by using cytoscape (http://cytoscape.org/). This picture shows the direct protein–protein interactions of the DE proteins induced by GS10. (TIFF 1973 kb)

Supplementary material 7 (DOC 131 kb)

Supplementary material 8 (DOC 258 kb)

Supplementary material 9 (XLS 201 kb)

Supplementary material 10 (XLS 184 kb)

Supplementary material 11 (XLS 20 kb)

Supplementary material 12 (XLS 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Gao, Z., Wang, X. et al. iTRAQ-based quantitative proteomics reveals important host factors involved in the high pathogenicity of the H5N1 avian influenza virus in mice. Med Microbiol Immunol 206, 125–147 (2017). https://doi.org/10.1007/s00430-016-0489-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-016-0489-3

Keywords

Navigation